Factoring Review

Common Factoring

When factoring, the first thing to check for is whether there is a common factor – a term that divides evenly into all the terms.

Example: $2x^2 - 8x = 2x(x-4)$

Difference of Squares

Binomials that are made up of two perfect squares, with a subtraction between them, can be factored in this way:

Example: $x^2 - 9 = (x - 3)(x + 3)$

Trinomial Factoring

The trinomials we will factor in our class are in this form: $ax^2 + bx + c$

Leading Coefficient = 1

If a trinomial has a leading coefficient of 1 (a = 1), one can factor quite simply:

 $x^2 - 4x - 5$ Here we have a = 1, b = -4, c = -5

To factor, we find two numbers that

- multiply to produce the *c* value

AND

- add to make the b value

Here the two numbers are -5 and +1.

Place the numbers in the brackets, and the factoring is done: $x^2 - 4x - 5 = (x - 5)(x + 1)$

Leading Coefficient not equal to 1

When the leading coefficient is not 1, there are different methods you can use – including decomposition, "guess and check," and the box method. Below is an example factoring question, done by the decomposition method and the box method. In class I will use the decomposition method.

Decomposition Method	Box Method
$3x^{2} - 19x - 14$ a = 3, b = -19, c = -14	$3x^2 - 19x - 14$ a = 3, b = -19, c = -14
1. Multiply "a" and "c" together: ac = (3)(-14) = -42 2. Find two numbers that multiply to produce the <i>ac</i> value and add to make the <i>b</i> value. For this question, -21 and $+2$ are the numbers.	 Multiply "a" and "c" together: ac = (3)(-14) = -42 Find two numbers that multiply to produce the ac value and add to make the b value. For this question, -21 and ⁺2 are the numbers.
3. Replace the middle term with two separate terms, using these numbers as coefficients: $3x^2 - 21x + 2x - 14$ 4. Factor the first two terms, then factor the second terms: $3x^2 - 21x + 2x - 14$ = 3x(x - 7) + 2(x - 7) 5. The final answer: $(x - 7)(3x + 2)$	3. Place the first and last terms in the box, as shown: $3x^{2}$ -14 4. Place the two numbers found in step 2, along with "x" in the remaining squares of the box: $3x^{2}$ $-21x$ $2x$ -14 5. Find the common factor of each row, and of each column. Collect these into two brackets to create the final factored form of the trinomial.

$3x^2$	-21x	3 <i>x</i>
2 <i>x</i>	-14	2
x	-7	

6. Final answer: (x-7)(3x+2)