Factoring Review

Common Factoring

When factoring, the first thing to check for is whether there is a common factor - a term that divides evenly into all the terms.

Example: $\quad 2 x^{2}-8 x=2 x(x-4)$

Difference of Squares

Binomials that are made up of two perfect squares, with a subtraction between them, can be factored in this way:

Example: $\quad x^{2}-9=(x-3)(x+3)$

Trinomial Factoring

The trinomials we will factor in our class are in this form: $a x^{2}+b x+c$

Leading Coefficient =1

If a trinomial has a leading coefficient of $1(a=1)$, one can factor quite simply:

$$
x^{2}-4 x-5 \quad \text { Here we have } a=1, b=-4, c=-5
$$

To factor, we find two numbers that

- multiply to produce the c value

AND

- add to make the b value

Here the two numbers are -5 and ${ }^{+} 1$.
Place the numbers in the brackets, and the factoring is done: $\quad x^{2}-4 x-5=(x-5)(x+1)$

Leading Coefficient not equal to 1

When the leading coefficient is not 1 , there are different methods you can use - including decomposition, "guess and check," and the box method. Below is an example factoring question, done by the decomposition method and the box method. In class I will use the decomposition method.

Decomposition Method

$3 x^{2}-19 x-14$

$$
a=3, b=-19, c=-14
$$

1. Multiply " a " and " c " together:

$$
a c=(3)(-14)=-42
$$

2. Find two numbers that multiply to produce the $a c$ value and add to make the b value.

For this question, -21 and ${ }^{+} 2$ are the numbers.
3. Replace the middle term with two separate terms, using these numbers as coefficients:

$$
3 x^{2}-21 x+2 x-14
$$

4. Factor the first two terms, then factor the second terms:

$$
\begin{aligned}
& 3 x^{2}-21 x+2 x-14 \\
& =3 x(x-7)+2(x-7)
\end{aligned}
$$

5. The final answer: $(x-7)(3 x+2)$

Box Method

$$
\begin{aligned}
& 3 x^{2}-19 x-14 \\
& a=3, b=-19, c=-14
\end{aligned}
$$

1. Multiply " a " and " c " together:

$$
a c=(3)(-14)=-42
$$

2. Find two numbers that multiply to produce the $a c$ value and add to make the b value.

For this question, -21 and ${ }^{+} 2$ are the numbers.
3. Place the first and last terms in the box, as shown:

$3 x^{2}$	
	-14

4. Place the two numbers found in step 2, along with " x " in the remaining squares of the box:

$3 x^{2}$	$-21 x$
$2 x$	-14

5. Find the common factor of each row, and of each column. Collect these into two brackets to create the final factored form of the trinomial.

$3 x^{2}$	$-21 x$	$3 x$
$2 x$	-14	2
x	-7	

6. Final answer: $\quad(x-7)(3 x+2)$
