## C_03 Key to More Chapter 1 Practice

Friday, January 13, 2017 3:02 PM

1. Describe how the graph of the second function compares to the graph of the first function:
a) $y=x^{5}$
$y=x^{5}-4$
b) $\quad \begin{aligned} y & =8 x+2 \\ y & =8(x-5)+2\end{aligned}$
Down 4
Right 5
c) $y=|x|$
$y=|x-5|+3$
Right 5, up 3
(not up 2, the " +2 " was there in the original)
2. Write the new equation obtained after:
a) $y=x^{2}$ is translated 6 units to the left $y=(x+6)^{2}$
b) $y=5^{x}$ is translated 3 units right $\quad y=5^{x-3}$
c) $y=\log (x)$ is translated 6 units left and 2 units up

$$
y=\log (x+6)+2
$$

3. The function $y=f(x)$ is transformed to become $y-5=f(x+4)$. If the point $(-2,6)$ lies on the graph of $y=f(x)$ what is its image point on the graph of $y-5=f(x+4)$ ?

$$
\text { Go up 5, left } 4 \text { : }
$$

$$
(-6,11)
$$

4. What is the domain for each of the following functions?
a) $y=\frac{5}{3 x+1}$
$\begin{aligned} 3 x+1 & \neq 0 \\ 3 x & \neq-1\end{aligned}$
b) $y=\sqrt{2 x-8}$

5. $y=f(x)$ contains the point $(12,24)$. It is changed as follows. What is the image point in each case?
a) $y=f(-x)$
$(-12,24)$
b) $y=-f(x)$
$(12,-24)$
c) $x=f(y)$
$(24,12)$
d) $y=f(8 x) \quad(3 / 2,24)$
e) $y=f\left(\frac{1}{2} x\right)$
$(24,24)$
f) $y=\frac{1}{2} f(x)$
$(12,12)$
g) $y=6 f(x) \quad(12,144)$
h) $2 y=f(4 x) \quad(3,12)$
VS $\frac{1}{2} \quad H S 1 / 4$
6. For each part below, describe how the graph of the second function compares to the graph of the first function:
a) $y=x^{5}$
b) $\begin{aligned} & y=x^{2} \\ & y=(4 x)^{2}\end{aligned} \quad H S$ by $\frac{1}{4}$
$y=3 x^{5} \quad$ VS by 3
or $y=3\left(x^{5}\right)$
c) $y=|x|$
$y=\left|\frac{1}{2} x\right| \quad$ HS 2
d) $y=\frac{1}{x}$
$4 y=\frac{1}{x}$
VS $\frac{1}{4}$
7. The function $y=f(x)$ is transformed to $3 y=f(x)$. If the point $(-12,12)$ lies on the graph of $y=f(x)$, what is its image point on the graph of $3 y=f(x)$ ?
$V S \frac{1}{3}$
$(-12,4)$
8. The function $y=f(x)$ is transformed to $y=f\left(-\frac{1}{2} x\right)$. If the point $(-2,4)$ lies on the graph of $y=f(x)$, what is its image point on the graph of $y=f\left(-\frac{1}{2} x\right)$ ?
$(-2,4) \rightarrow \begin{gathered}\text { reflect } \\ \text { acossy } \\ (2,4\end{gathered}$
HS by 2
HS by -2
COR: HS by 2 , reflect acouss $y$-axis)
OR: $(-2,4) \xrightarrow{\text { Hs by }-2}(4,4)$
aa) List each change that will happen in the graph, when the equation $y=f(x)$ is changed to $y=2 f\left(-\frac{1}{2} x\right)$.

$$
\begin{aligned}
& \text { VS by } 2 \\
& \text { HS by }-2
\end{aligned}
$$

b) The graph of $y=f(x)$ is shown on the grid. Sketch the graph of $y=2 f\left(-\frac{1}{2} x\right)$ on the same grid.

| oRIG |  |
| ---: | ---: |
| -3 | -1 |
| -1 | 3 |
| 2 | -3 |
| 4 | -2 |


| new |  |
| :---: | :---: |
| 6 | -2 |
| 2 | 6 |
| -4 | -6 |
| -8 | -4 |



REVIEW OF 1.3-1.4, AND DOMAIN/RANGE

1. Suppose that the graph of $y=f(x)$ contains the point $(24,4)$. Find the image point under each of the following transformations: up 7
$y=f(8(x-2))+2 \quad(24,4)$
b) $y=f(8 x-16)+2$

$$
\rightarrow(3,4)
$$

$$
(24,4) \rightarrow(24,-4) \rightarrow(24,-8) \rightarrow(8,-8) \rightarrow(6,-1)
$$

$$
\rightarrow(5,4)
$$

$$
p_{0} 2
$$

$$
\{x \mid-4 \leq x \leq 12, x \in \mathbb{R}\}
$$

b) What is the range of the inverse of $g(x)$ ? $\{y \mid 5 \leq y \leq 9, y \in \mathbb{R})$

$$
\{y \mid 5 \leq y \leq 9, y \in \mathbb{R})
$$

3. State the domain for each of the following. Remember that division by zero is undefined and that we cannot take square roots of negative numbers - this should help you figure out the domains.

$$
x-3 \neq 0
$$

$$
X \neq 3<\{x \mid x \neq 3, x \in \mathbb{R}\}
$$

4. State the domain and range for each of the following:
b) $f(x)=\sqrt{18-2 x} \quad 18-2 x \geq 0$

$$
\begin{aligned}
& \frac{18}{2} \geq \frac{2 x}{2} \\
& 9 \geq x
\end{aligned}
$$

a)

b)
a) What is the domain of the inverse of $\mathrm{g}(\mathrm{x})$ ?
, 5
a) $f(x)=5$

$$
\left\{\begin{array}{l}
x \mid-4 \leq x \leq 4, x \in \mathbb{R}\} \\
\substack{1-3 \leq y \leq 3,\} \in \mathbb{R})}
\end{array}\right.
$$

$(y \mid-3 \leq y \leq 3, y \in \mathbb{R})$

1) replace $f(x)$
with $y$ :

$$
y=3 x+12
$$

2) trade $x$ and $y$ : $\quad x=3 y+12$
la) $(6,-1)$
aa) $\{x \mid-4 \leq x \leq 12, x \in \mathbb{R}\}$
b) $(5,6)$

3a) $\{x \mid x \neq 3, x \in \mathbb{R}\}$
b) $\{y \mid 5 \leq y \leq 9, y \in \mathbb{R}\}$


1. If $y$ is replaced by $y+3$ in a function, then the graph of the new function will be:
A. translated up 3
B. translated down 3
C. vertically stretched, factor 3
D. vertically stretched, factor $\frac{1}{3}$
2. The point $(3,5)$ is on the graph of the function $y=f(x)$. The point $(0,6)$ is on the graph of the function $y=f(x-a)+b$. What are the values of $a$ and $b$ ? Point has moved 3 left and 1 up,
A. $\quad a=3, b=1$
B. $\quad a=3, b=-1$
(C.) $a=-3, b=1$
D. $a=-3, b=-1$
so we have $y=f(x+3)+1$ which means the same thing as
$y=f(x-(-3))+1$
3. Which equation will move the graph of $y=x^{2}$ three units to the left?
A. $y-3=x^{2}$
B. $y=x^{2}-3$
C. $y=(x-3)^{2}$
(D. $y=(x+3)^{2}$
4. The graph of $y=g(x)$ is given at right.

A graph of $y=-g(x)$ would appear as which graph below?

$$
\begin{aligned}
& \text { reflect across the } y \text {-axis } \\
& \text { (upside -down) }
\end{aligned}
$$


b)

c)

d)

5. In which line is $y=2 x^{2}-3 x$ reflected to obtain $x=2 y^{2}-3 y$ ?
(A.) $y=x$
B. $x$-axis
C. $y$-axis
D. both $x$-axis and $y$-axis

$$
\begin{aligned}
& x \text { 's and } y \text { 's have interchanged, } \\
& \text { so reflects across } y=x
\end{aligned}
$$

This reflects across the $y$-axis, so the "mirror" is the $y$-axis.
6. If $y=f(x)$ is transformed to $\overbrace{y=f(-x)}$, any invariant points will lie on:
A. $\quad$ the $x$-axis
(B) the $y$-axis
C. the line $y=x$
D. there are no invariant points
7. The point $(7,-4)$ is on the graph of the function $y=f(x)$. Which point must be on the graph of the function $y=-2 f(x)$ ? $/ s$ by 2 and reflect across $x$-axis $\Rightarrow$ multiply $y$-coordinate by $\mathbf{- 2}$.
A. $(7,-8)$
(B)
C. $(7,-2)$
D. $(7,2)$
8. What value of $a$ in the equation $y=\sqrt{a x}$ will cause a horizontal stretch, factor $\frac{1}{3}$ ?
A. $\quad a=\frac{1}{3}$
B. $a=3$
C. $a=-\frac{1}{3}$
D. $a=-3$
9. If $y=f(x)$ is compared to $y=f(3 x-6)$, what transformations have occurred?
A. horizontal stretch factor $\frac{1}{3}$, right 6 units
B. horizontal stretch factor $\frac{1}{3}$, right 2 units
C. horizontal stretch factor 3 , right 2 units
D. horizontal stretch factor 3 , right 6 units

$$
\begin{aligned}
& \text { Factor first: } \\
& y=f(3(x-2)) \\
\Rightarrow & {\left[\begin{array}{l}
H s \text { by } 1 / 3 \\
2 \text { units right }
\end{array}\right.}
\end{aligned}
$$

10. The graph of $y=f(x)$ is given below. What transformations will produce the new image?

(A)
B. reflect in the $x$-axis and shift up one
C. reflect in the $y$-axis and shift down one
D. reflect in the $y$-axis and shift up one

it's upside-down, so
reflect across $x$-axis
then
shift down I unit
11. The graph of $y=h(x)$ is shown below. What new equation will produce the graph of the transformed function?

A. $-y=h(x+4)$
B. $y=h(-x)$
(C.) $y=h(-(x+4))$
D. $y=h(-(x-4))$

12. The point $(a, b)$ is on the graph of $y=f(x)$. Which point must be on the graph of
$y+2=3 f\left(-x_{0}\right) ?$
$y=3 f(-x)-2$ down 2
B. $(-a, 3(b-2))$
(A) $(-a, 3 b-2)$
vS 3 reflect across
$y-n x i s$
C. $\left(-a, \frac{b-2}{3}\right)$
D. $\left(-a, \frac{b}{3}-2\right)$
reflect in the $y$-axis
then
shift 4 wits
left
13. Identify the graph of the inverse for the function shown at right.


a)

(c)


b)

d)


$$
\begin{aligned}
& y=x^{3}+4 \\
& \text { 1) trade } x \text { and } y \text { : } \quad x=y^{3}+4 \\
& \text { 2) solve for } y \text { : } x-4=y^{3} \\
& \begin{array}{l}
\sqrt[3]{x-4}=\sqrt[3]{y^{3}} \quad \text { B. } \quad f^{-1}(x)=\frac{1}{x^{3}+4} \\
\sqrt[3]{x-4}=y
\end{array} \\
& \text { C. } \quad f^{-1}(x)=\sqrt[3]{x}-4 \\
& \text { (D) } f^{-1}(x)=\sqrt[3]{x-4}
\end{aligned}
$$

15. Kalvin is asked what steps would be required to graph $y=f(2 x+6)$ if he is given the graph of $y=f(x)$. He writes that the function needs to be vertically stretched by a factor of $\frac{1}{2}$ and then translated right 6 units. What mistakes did he make?
1) First, he should factor, to get $y=f(2(x+3))$
2) He should say horizontal stretch by $\frac{1}{2}$, and a translation LEFT, 3 units. 16. Omitted
17. Given the graph of $y=m(x)$ below, draw the graph of $y+3=m(x-1)$.
move $\left[\begin{array}{l}\text { right I } \\ \text { down } 3\end{array}\right.$


| ORIG |  | new |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | -3 | -2 |  | 3 |
| 0 | -4 |  |  |  |
| 0 | 2 |  | 0 | 0 |
| 4 | 0 |  | -2 | 4 |
| 5 | 1 |  | -5 | 0 |
| 6 | 0 |  | -6 | 0 |

18. Given the graph of $y=m(x)$ below, draw the graph of $\frac{1}{2} y=m(-x)$.

19. Given the graph of $y=m(x)$ at right, draw the graph of $y=m(-x+2)$.
Factor first: $\quad y=m(-x+2)$

$$
\begin{aligned}
& \qquad y=m(-1(x-2)) \\
& \Rightarrow \text { reflect across } y \text {-axis } \\
& \text { translate } 2 \text { right }
\end{aligned}
$$


20. Given the function $y=(x-3)^{2}-2$
a) Graph the function on the grid.
parabola,
b) Determine the domain of this function. $\quad V=(3,-2)$

$$
\{x \mid x \in \mathbb{R}\}
$$

c) Determine the range of this function.

$$
\{y \mid y \geq-2, y \in \mathbb{R}\}
$$

d) Graph the inverse of this function.

Trade $x$ and $y$. (red graph)
e) How could you restrict the domain of $y=(x-3)^{2}-2$ so that its inverse will also be a function?

Restrict domain to either $x \geq 3$, the right half of the parabola OR, to

$$
x \leq 3 \text {, the left half of the parabola }
$$

f) Algebraically, determine the equation of the inverse of $y=(x-3)^{2}-2$.

1) Trade $x$ and $y$ : $y=(x-3)^{2}-2$ becomes $x=(y-3)^{2}-2$
2) Solve for $y$.

$$
\begin{gathered}
x+2=(y-3)^{2} \\
\pm \sqrt{x+2}=\sqrt{(y-3)^{2}} \\
\pm \sqrt{x+2}=y-3 \\
\quad y=3 \pm \sqrt{x-2}
\end{gathered}
$$

To be a function, pick either
$u=3+\sqrt{x+3}$ (tor half)

To be a function, pick either

$$
\begin{array}{ll}
y=3+\sqrt{x+2} & \text { (top half) } \\
y=3-\sqrt{x+2} & \text { (bottom half) }
\end{array} \longrightarrow \text { OR }
$$

