$C_{_}$	03	3 K	(e	y t	o l	M	or	e (Ch	ap	ote	er	1	Pr	ac	tic	ce									
Frida								2 PM																		
IIIai	лу, эс	TTGG	. у _	5, 2	017		3.02	- 1 1 7																		

PREC 12 – Reviewing 1.0-1.2

Name:

1. Describe how the graph of the second function compares to the graph of the first function:

a)
$$y = x^5$$

 $y = x^5 - 4$

b)
$$y = 8x + 2$$

 $y = 8(x-5) + 2$

c)
$$y = |x|$$

 $y = |x - 5| + 3$

Down 4

y=8(x-5)+2 y=|x-5|+3 Right 5, up 3

Right 5

(not up 2, the "+2" was there in the original) ed after:

2. Write the new equation obtained after:

a)
$$y = x^2$$
 is translated 6 units to the left

$$y = (x+6)^2$$
$$y = 5^{x-3}$$

b)
$$y = 5^x$$
 is translated 3 units right

$$y = 5^{\times -3}$$

c) $y = \log(x)$ is translated 6 units left and 2 units up

3. The function y = f(x) is transformed to become y - 5 = f(x + 4). If the point (-2, 6)lies on the graph of y = f(x) what is its **image point** on the graph of y - 5 = f(x + 4)?

4. What is the domain for each of the following functions?

$$a) y = \frac{5}{3x+1}$$

b)
$$y = \sqrt{2x - 8}$$

5. y = f(x) contains the point (12, 24). It is changed as follows. What is the image point in each case?

a)
$$y = f(-x)$$
 (-12,24)

b)
$$y = -f(x)$$

b)
$$y = -f(x)$$
 (12,-24)

c)
$$x = f(y)$$
 (24, 12) d) $y = f(8x)$ (32, 24)

$$d) y = f(8x)$$

$$(\frac{3}{2}, 24)$$

e)
$$y = f(\frac{1}{2}x)$$
 (24,24)

f)
$$y = \frac{1}{2} f(x)$$

f)
$$y = \frac{1}{2}f(x)$$
 (12, 12)

g)
$$y = 6f(x)$$
 (12, 144)

h)
$$2y = f(4x)$$
 (3, 12)

6. For each part below, describe how the graph of the second function compares to the

$$y = 3x^{5}$$

$$y = (4x)^{2}$$

$$y = |x|$$

$$y = \left|\frac{1}{2}x\right|$$

$$y = \left|\frac{1}{2}x\right|$$

$$y = \left|\frac{1}{x}\right|$$

- 7. The function y = f(x) is transformed to 3y = f(x). If the point (-12, 12) lies on the graph of y = f(x), what is its **image point** on the graph of 3y = f(x)? VŚZ (-12, 4)
- 8. The function y = f(x) is transformed to $y = f\left(-\frac{1}{2}x\right)$. If the point (-2, 4) lies on the

$$(-2,4) \rightarrow (2,4)$$

$$(4,4)$$

- 9a) List each change that will happen in the graph, when the equation y = f(x) is VS by 2 HS by -2 changed to $y = 2f\left(-\frac{1}{2}x\right)$.
- b) The graph of y = f(x) is shown on the grid. Sketch

the graph of
$$y = 2f\left(-\frac{1}{2}x\right)$$
 on the same grid.

$$\begin{array}{c|ccc}
\hline
& & & & & & \\
\hline
& & & & \\
\hline
& & & & & \\
\hline
& &$$

REVIEW OF 1.3-1.4, AND DOMAIN/RANGE

1. Suppose that the graph of y = f(x) contains the point (24, 4). Find the *image point* under

reflect y = -2f(3(x+2)) + 7VS, by 2

HS '3

each of the following transformations: \sqrt{p} 7 y = f(8(x-2)) + 2 (24,4)a) y = -2f(3(x+2)) + 7 left 2 b) y = f(8x-16) + 2 (24,4)getted y = -2f(3(x+2)) + 7 left 2 b) y = f(8x-16) + 2 (24,4) y = -2f(3(x+2)) + 7 left 2 b) y = f(8x-16) + 2 (3,4) y = -2f(3(x+2)) + 7 left 2 c) y = f(8x-16) + 2 y = f(8x-16) $(24,4) \rightarrow (24,-4) \rightarrow (24,-8) \rightarrow (8,-8) \rightarrow (6,-1)$

a) What is the domain of the inverse of g(x)?

{X | -4 ≤ x ≤ 12, x ∈ A}

b) $f(x) = \sqrt{18 - 2x}$

3. State the domain for each of the following. Remember that division by zero is undefined and that we cannot take square roots of negative numbers – this should help you figure out the domains.

$$\begin{array}{c} X-3\neq 0 \\ X\neq 3 \end{array} \qquad \begin{array}{c} \text{a)} \quad f(x)=\underbrace{\begin{array}{c} 5 \\ x-3 \end{array}} \\ \left\{ x\mid X\neq 3, \ X\in\mathbb{R} \right\} \end{array}$$

4. State the domain and range for each of the following:

 $\begin{cases} \chi / -4 \le x \le 4, & \text{X \in IR} \end{cases}$ $(y) -3 \le y \le 3, & \text{y \in IR} \end{cases}$ (y) = 3x + 12? (y) = 3x + 12 (y) = 3x + 12

b) (5, 6)

1a)
$$(6, -1)$$

2a) $\{r \mid -4 \le r \le 12 \mid r \in \mathbb{R}\}$

2a)
$$\{x \mid -4 \le x \le 12, x \in \mathbb{R}\}$$
 b) $\{y \mid 5 \le y \le 9, y \in \mathbb{R}\}$

3a)
$$\{x \mid x \neq 3, x \in \mathbb{R}\}$$
 b) $\{x \mid x \leq 9, x \in \mathbb{R}\}$

b)
$$\{x \mid x \le 9, x \in \mathbb{R}\}$$

4a)
$$\{x \mid -4 \le x \le 4, x \in \mathbb{R}\}$$

b) $\{x \mid x \le 0, x \in \mathbb{R}\}$

4a)
$$\{x \mid -4 \le x \le 4, x \in \mathbb{R}\}\$$
 $\{y \mid -3 \le y \le 3, y \in \mathbb{R}\}\$

$$\{y \mid -3 \le y \le 3, \ y \in \mathbb{R}\}$$
$$\{y \mid y \in \mathbb{R}\}$$

$$\{y \mid y \in \mathbb{R} \}$$

 $x-12$

PREC12 Chapter 1 Practice Test

Name:

Answer Key

- 1. If y is replaced by y+3 in a function, then the graph of the new function will be:
 - translated up 3

В.

translated down 3

- C. vertically stretched, factor 3
- vertically stretched, factor $\frac{1}{3}$ D.
- 2. The point (3, 5) is on the graph of the function y = f(x). The point (0, 6) is on the graph of the function y = f(x-a) + b. What are the values of a and b?

A.
$$a = 3, b = 1$$

a = 3, b = -1

Point has moved 3 left and 1 up, so we have y = f(x + 3) + 1which means the same thing as

(C.)
$$a = -3, b = 1$$

D.

a = -3, b = -1 y = f(x - (-3)) + 1

3. Which equation will move the graph of $y = x^2$ three units to the left?

A.
$$y - 3 = x^2$$

 $y = x^2 - 3$

C.
$$y = (x-3)^2$$

4. The graph of y = g(x) is given at right.

A graph of y = -g(x) would appear as which graph below?

reflect across the y-axis (upside -down)

- 5. In which line is $y = 2x^2 3x$ reflected to obtain $x = 2y^2 3y$?
 - y = x

B. x-axis

y-axis

D. both x-axis and y-axis

x's and y's have interchanged,
So reflects across y=x

- 6. If y = f(x) is transformed to y = f(-x), any *invariant points* will lie on:
 - A. the x-axis

(B.) the v-axis

C. the line y = x

- D. there are no invariant points
- 7. The point (7, -4) is on the graph of the function y = f(x). Which point must be on the graph of the function y = -2f(x) >15 by 2 and reflect across x-axis \Rightarrow multiply y-coordinate by -2.
 - (7, -8)A.

(7,8)

C. (7,-2)

- (7,2)
- 8. What value of a in the equation $y = \sqrt{ax}$ will cause a horizontal stretch, factor $\frac{1}{3}$?
 - A. $a = \frac{1}{3}$

a = 3

C. $a = -\frac{1}{3}$

- a = -3
- 9. If y = f(x) is compared to y = f(3x 6), what transformations have occurred?
 - horizontal stretch factor $\frac{1}{3}$, right 6 units A.
- (B.) horizontal stretch factor $\frac{1}{3}$, right 2 units
- C. horizontal stretch factor 3, right 2 units
- Factor first:

 y = f(3(X-2))

 HS by 1/3

 =) 2 units right
- D. horizontal stretch factor 3, right 6 units
- 10. The graph of y = f(x) is given below. What transformations will produce the new image?

- reflect in the x-axis and shift down one
- reflect across x-axis

B. reflect in the x-axis and shift up one

- C. reflect in the y-axis and shift down one

D. reflect in the y-axis and shift up one 11. The graph of y = h(x) is shown below. What new equation will produce the graph of the transformed function?

- -y = h(x+4)y = h(-(x+4))

- y = h(-x)В.
- D. y = h(-(x-4))

12. The point (a,b) is on the graph of y = f(x). Which point must be on the graph of

- y+2=3f(-x)? (A) (-a, 3b-2)C. $\left(-a, \frac{b-2}{3}\right)$ y=3f(-x)-2 y=3f(-x)-2
- 13. Identify the graph of the *inverse* for the function shown at right.

trade x and y coordinates

inverse

14. Find
$$y = f^{-1}(x)$$
 if $f(x) = x^3 + 4$

$$y = x^{3} + 4$$
1) trade x and y: $x = y^{3} + 4$
2) solve for y: $x - 4 = y^{3}$
A. $f^{-1}(x) = x^{3} - 4$

$$3\sqrt{x - 4} = y$$
B. $f^{-1}(x) = \frac{1}{x^{3} + 4}$

A.
$$f^{-1}(x) = x^3 - 4$$

$$3\sqrt{x-4}$$
 = $3\sqrt{y^3}$ B. $f^{-1}(x) = \frac{1}{x^3+4}$

C.
$$f^{-1}(x) = \sqrt[3]{x} - 4$$

$$\int_{0}^{1} f^{-1}(x) = \sqrt[3]{x-4}$$

15. Kalvin is asked what steps would be required to graph y = f(2x+6) if he is given the graph of y = f(x). He writes that the function needs to be vertically stretched by a factor of $\frac{1}{2}$ and then translated right 6 units. What mistakes did he make?

1) First, he should factor, to get y = f(2(x+3))2) He should say horizontal stretch by $\frac{1}{2}$, and a translation LEFT, 3 units. 16. Omitted

17. Given the graph of y = m(x) below,

18. Given the graph of y = m(x) below,

draw the graph of y+3=m(x-1).

draw the graph of $\frac{1}{2}y = m(-x)$.

19. Given the graph of
$$y = m(x)$$
 at right, draw the graph of $y = m(-x+2)$.

Factor first: $y = m(-x+2)$
 $y = m(-1(x-2))$
 $y = m(-1(x-$

- 20. Given the function $y = (x-3)^2 2$
- a) Graph the function on the grid.

$$\{x \mid x \in \mathbb{R}\}$$

c) Determine the range of this function. $\{y \mid y \ge -2, y \in \mathbb{R}^3\}$

d) Graph the *inverse* of this function.

Trade x and y. (red graph)

 $y = (x-3)^2 - 2$ so that its inverse will also be a function?

f) Algebraically, determine the equation of the inverse of $y = (x-3)^2 - 2$.

2) Solve for y.

$$X + 2 = (y-3)^2$$

 $f(x+2) = \sqrt{(y-3)^2}$

To be a function, pick either

$$y = 3 + \sqrt{x+2}$$
 (top half)

or

 $y = 3 - \sqrt{x+2}$ (bottom half)