C_03 MORE Chapter 1 Practice Questions

<u>PREC 12 – Reviewing 1.0-1.2</u>

1. Describe how the graph of the second function compares to the graph of the first function:

a) $y = x^5$ $y = x^5 - 4$ b) y = 8x + 2 y = 8(x - 5) + 2c) y = |x|y = |x - 5| + 3

- 2. Write the new equation obtained after:
- a) $y = x^2$ is translated 6 units to the left
- b) $y = 5^x$ is translated 3 units right
- c) $y = \log(x)$ is translated 6 units left and 2 units up

3. The function y = f(x) is transformed to become y-5 = f(x+4). If the point (-2, 6) lies on the graph of y = f(x) what is its *image point* on the graph of y-5 = f(x+4)?

4. What is the domain for each of the following functions?

a)
$$y = \frac{5}{3x+1}$$
 b) $y = \sqrt{2x-8}$

5. y = f(x) contains the point (12, 24). It is changed as follows. What is the image point in each case?

a) y = f(-x)b) y = -f(x)c) x = f(y)d) y = f(8x)e) $y = f(\frac{1}{2}x)$ f) $y = \frac{1}{2}f(x)$ g) y = 6f(x)h) 2y = f(4x) 6. For each part below, describe how the graph of the second function compares to the graph of the first function:

a)	$y = x^5$	b)	$y = x^2$
	$y = 3x^5$		$y = \left(4x\right)^2$
c)	y = x	d)	$y = \frac{1}{x}$
	$y = \left \frac{1}{2}x\right $		$4y = \frac{1}{x}$

7. The function y = f(x) is transformed to 3y = f(x). If the point (-12, 12) lies on the graph of y = f(x), what is its *image point* on the graph of 3y = f(x)?

8. The function y = f(x) is transformed to $y = f\left(-\frac{1}{2}x\right)$. If the point (-2, 4) lies on the graph of y = f(x), what is its *image point* on the graph of $y = f\left(-\frac{1}{2}x\right)$?

9a) List each change that will happen in the graph, when the equation y = f(x) is changed to $y = 2f\left(-\frac{1}{2}x\right)$.

b) The graph of y = f(x) is shown on the grid. Sketch the graph of $y = 2f\left(-\frac{1}{2}x\right)$ on the same grid.

REVIEW OF 1.3-1.4, AND DOMAIN/RANGE

1. Suppose that the graph of y = f(x) contains the point (24, 4). Find the *image point* under each of the following transformations:

a)
$$y = -2f(3(x+2)) + 7$$

b) $y = f(8x-16) + 2$

- 2. A function, y = g(x), has domain $\{x \mid 5 \le x \le 9, x \in \Re\}$ and range $\{y \mid -4 \le y \le 12, y \in \Re\}$. a) What is the domain of the <u>inverse</u> of g(x)?
 - b) What is the range of the <u>inverse</u> of g(x)?

3. State the domain for each of the following. Remember that division by zero is undefined and that we cannot take square roots of negative numbers – this should help you figure out the domains.

a)
$$f(x) = \frac{5}{x-3}$$
 b) $f(x) = \sqrt{18-2x}$

4. State the domain and range for each of the following:

5. What is the equation of the inverse of f(x) = 3x + 12?

PREC12 Chapter 1 Practice Test

1. If y is replaced by $y+3$ in a function, then the graph of the new function will be:						
А.	translated up 3	B.	translated down 3			
C.	vertically stretched, factor 3	D.	vertically stretched, factor $\frac{1}{3}$			
2. The point (3, 5) is on the graph of the function $y = f(x)$. The point (0, 6) is on the						

graph of the function y = f(x-a)+b. What are the values of a and b? A. a = 3, b = 1B. a = 3, b = -1

C.
$$a = -3, b = 1$$
 D. $a = -3, b = -1$

3. Which equation will move the graph of $y = x^2$ three units to the left?

A.
$$y-3 = x^2$$

B. $y = x^2 - 3$
C. $y = (x-3)^2$
D. $y = (x+3)^2$

4. The graph of y = g(x) is given at right.

A graph of y = -g(x) would appear as which graph below?

y-axis

C.

5. In which line is $y = 2x^2 - 3x$ reflected to obtain $x = 2y^2 - 3y$?

A.
$$y = x$$
 B. x-axis

D. both *x*-axis and *y*-axis

6. If y = f(x) is transformed to y = f(-x), any *invariant points* will lie on:

- A. the *x*-axis B. the *y*-axis
- C. the line y = x D. there are no invariant points

7. The point (7, -4) is on the graph of the function y = f(x). Which point must be on the graph of the function y = -2f(x)?

A.(7,-8)B.(7,8)C.(7,-2)D.(7,2)

8. What value of a in the equation $y = \sqrt{ax}$ will cause a horizontal stretch, factor $\frac{1}{3}$?

A.
$$a = \frac{1}{3}$$

C. $a = -\frac{1}{3}$
B. $a = 3$
D. $a = -3$

9. If y = f(x) is compared to y = f(3x-6), what transformations have occurred?

- A. horizontal stretch factor $\frac{1}{3}$, right 6 units
- B. horizontal stretch factor $\frac{1}{3}$, right 2 units
- C. horizontal stretch factor 3, right 2 units
- D. horizontal stretch factor 3, right 6 units

10. The graph of y = f(x) is given below. What transformations will produce the new image?

- A. reflect in the *x*-axis and shift down one
- B. reflect in the *x*-axis and shift up one
- C. reflect in the *y*-axis and shift down one
- D. reflect in the *y*-axis and shift up one

11. The graph of y = h(x) is shown below. What new equation will produce the graph of the transformed function?

12. The point (a,b) is on the graph of y = f(x). Which point must be on the graph of y+2=3f(-x)?

13. Identify the graph of the *inverse* for the function shown at right.

14. Find $y = f^{-1}(x)$ if $f(x) = x^3 + 4$.

A.
$$f^{-1}(x) = x^3 - 4$$
 B. $f^{-1}(x) = \frac{1}{x^3 + 4}$

C.
$$f^{-1}(x) = \sqrt[3]{x} - 4$$
 D. $f^{-1}(x) = \sqrt[3]{x-4}$

15. Kalvin is asked what steps would be required to graph y = f(2x+6) if he is given the graph of y = f(x). He writes that the function needs to be vertically stretched by a factor of $\frac{1}{2}$ and then translated right 6 units. What mistakes did he make?

16. Omitted

17. Given the graph of y = m(x) below, below,

draw the graph of y + 3 = m(x-1).

18. Given the graph of y = m(x)

draw the graph of
$$\frac{1}{2}y = m(-x)$$
.

19. Given the graph of y = m(x) at right, draw the

graph of y = m(-x+2).

- 20. Given the function $y = (x-3)^2 2$
- a) Graph the function on the grid.
- b) Determine the domain of this function.
- c) Determine the range of this function.
- d) Graph the *inverse* of this function.

e) How could you restrict the domain of $y = (x-3)^2 - 2$ so that its inverse will also be a function?

f) Algebraically, determine the equation of the inverse of $y = (x-3)^2 - 2$.