C 03 MORE Chapter 1 Practice Questions

PREC 12 - Reviewing 1.0-1.2

1. Describe how the graph of the second function compares to the graph of the first function:
a) $y=x^{5}$
b) $y=8 x+2$
c) $y=|x|$
$y=x^{5}-4$
$y=8(x-5)+2$
$y=|x-5|+3$
2. Write the new equation obtained after:
a) $y=x^{2}$ is translated 6 units to the left
b) $\quad y=5^{x}$ is translated 3 units right
c) $y=\log (x)$ is translated 6 units left and 2 units up
3. The function $y=f(x)$ is transformed to become $y-5=f(x+4)$. If the point $(-2,6)$ lies on the graph of $y=f(x)$ what is its image point on the graph of $y-5=f(x+4)$?
4. What is the domain for each of the following functions?
a) $y=\frac{5}{3 x+1}$
b) $y=\sqrt{2 x-8}$
5. $y=f(x)$ contains the point $(12,24)$. It is changed as follows. What is the image point in each case?
a) $y=f(-x)$
b) $y=-f(x)$
c) $x=f(y)$
d) $y=f(8 x)$
e) $y=f\left(\frac{1}{2} x\right)$
f) $y=\frac{1}{2} f(x)$
g) $y=6 f(x)$
h) $2 y=f(4 x)$
6. For each part below, describe how the graph of the second function compares to the graph of the first function:
a) $y=x^{5}$
b) $y=x^{2}$
$y=3 x^{5}$

$$
y=(4 x)^{2}
$$

c) $y=|x|$
d) $y=\frac{1}{x}$
$y=\left|\frac{1}{2} x\right|$

$$
4 y=\frac{1}{x}
$$

7. The function $y=f(x)$ is transformed to $3 y=f(x)$. If the point $(-12,12)$ lies on the graph of $y=f(x)$, what is its image point on the graph of $3 y=f(x)$?
8. The function $y=f(x)$ is transformed to $y=f\left(-\frac{1}{2} x\right)$. If the point $(-2,4)$ lies on the graph of $y=f(x)$, what is its image point on the graph of $y=f\left(-\frac{1}{2} x\right)$?

9a) List each change that will happen in the graph, when the equation $y=f(x)$ is changed to $y=2 f\left(-\frac{1}{2} x\right)$.
b) The graph of $y=f(x)$ is shown on the grid. Sketch the graph of $y=2 f\left(-\frac{1}{2} x\right)$ on the same grid.

REVIEW OF 1.3-1.4, AND DOMAIN/RANGE

1. Suppose that the graph of $y=f(x)$ contains the point $(24,4)$. Find the image point under each of the following transformations:
a) $y=-2 f(3(x+2))+7$
b) $y=f(8 x-16)+2$
2. A function, $y=g(x)$, has domain $\{x \mid 5 \leq x \leq 9, x \in \mathfrak{R}\}$ and range $\{y \mid-4 \leq y \leq 12, y \in \mathfrak{R}\}$.
a) What is the domain of the inverse of $\mathrm{g}(\mathrm{x})$?
b) What is the range of the inverse of $\mathrm{g}(\mathrm{x})$?
3. State the domain for each of the following. Remember that division by zero is undefined and that we cannot take square roots of negative numbers - this should help you figure out the domains.
a) $f(x)=\frac{5}{x-3}$
b) $f(x)=\sqrt{18-2 x}$
4. State the domain and range for each of the following:
a)

b)

5. What is the equation of the inverse of $f(x)=3 x+12$?

PREC12 Chapter 1 Practice Test

1. If y is replaced by $y+3$ in a function, then the graph of the new function will be:
A. translated up 3
B. translated down 3
C. vertically stretched, factor 3
D. vertically stretched, factor $\frac{1}{3}$
2. The point $(3,5)$ is on the graph of the function $y=f(x)$. The point $(0,6)$ is on the graph of the function $y=f(x-a)+b$. What are the values of a and b ?
A. $\quad a=3, b=1$
B. $\quad a=3, b=-1$
C. $a=-3, b=1$
D. $\quad a=-3, b=-1$
3. Which equation will move the graph of $y=x^{2}$ three units to the left?
A. $y-3=x^{2}$
B. $y=x^{2}-3$
C. $y=(x-3)^{2}$
D. $y=(x+3)^{2}$
4. The graph of $y=g(x)$ is given at right.

A graph of $y=-g(x)$ would appear as which graph below?

a)

b)

c)

d)

5. In which line is $y=2 x^{2}-3 x$ reflected to obtain $x=2 y^{2}-3 y$?
A. $y=x$
B. x-axis
C. y-axis
D. both x-axis and y-axis
6. If $y=f(x)$ is transformed to $y=f(-x)$, any invariant points will lie on:
A. the x-axis
B. the y-axis
C. the line $y=x$
D. there are no invariant points
7. The point $(7,-4)$ is on the graph of the function $y=f(x)$. Which point must be on the graph of the function $y=-2 f(x)$?
A. $(7,-8)$
B. $(7,8)$
C. $(7,-2)$
D. $(7,2)$
8. What value of a in the equation $y=\sqrt{a x}$ will cause a horizontal stretch, factor $\frac{1}{3}$?
A. $\quad a=\frac{1}{3}$
B. $a=3$
C. $a=-\frac{1}{3}$
D. $a=-3$
9. If $y=f(x)$ is compared to $y=f(3 x-6)$, what transformations have occurred?
A. horizontal stretch factor $\frac{1}{3}$, right 6 units
B. horizontal stretch factor $\frac{1}{3}$, right 2 units
C. horizontal stretch factor 3, right 2 units
D. horizontal stretch factor 3 , right 6 units
10. The graph of $y=f(x)$ is given below. What transformations will produce the new image?

A. reflect in the x-axis and shift down one
B. reflect in the x-axis and shift up one
C. reflect in the y-axis and shift down one
D. reflect in the y-axis and shift up one
11. The graph of $y=h(x)$ is shown below. What new equation will produce the graph of the transformed function?

A. $-y=h(x+4)$

$\begin{array}{ll}\text { A. } & -y=h(x+4) \\ \text { C. } & y=h(-(x+4))\end{array}$
B. $y=h(-x)$
C. $y=h(-(x+4))$
D. $y=h(-(x-4))$
12. The point (a, b) is on the graph of $y=f(x)$. Which point must be on the graph of $y+2=3 f(-x) ?$
A. $(-a, 3 b-2)$
B. $(-a, 3(b-2))$
C. $\left(-a, \frac{b-2}{3}\right)$
D. $\left(-a, \frac{b}{3}-2\right)$
13. Identify the graph of the inverse for the function shown at right.

a)

b)

c)

d)

14. Find $y=f^{-1}(x)$ if $f(x)=x^{3}+4$.
A. $f^{-1}(x)=x^{3}-4$
B. $f^{-1}(x)=\frac{1}{x^{3}+4}$
C. $\quad f^{-1}(x)=\sqrt[3]{x}-4$
D. $f^{-1}(x)=\sqrt[3]{x-4}$
15. Kalvin is asked what steps would be required to graph $y=f(2 x+6)$ if he is given the graph of $y=f(x)$. He writes that the function needs to be vertically stretched by a factor of $\frac{1}{2}$ and then translated right 6 units. What mistakes did he make?
16. Omitted
17. Given the graph of $y=m(x)$ below, below,
draw the graph of $y+3=m(x-1)$.

18. Given the graph of $y=m(x)$ draw the graph of $\frac{1}{2} y=m(-x)$.

19. Given the graph of $y=m(x)$ at right, draw the graph of $y=m(-x+2)$.
20. Given the function $y=(x-3)^{2}-2$
a) Graph the function on the grid.
b) Determine the domain of this function.
c) Determine the range of this function.
d) Graph the inverse of this function.
e) How could you restrict the domain of $y=(x-3)^{2}-2$ so that its inverse will also be a function?
f) Algebraically, determine the equation of the

 inverse of $y=(x-3)^{2}-2$.

