C_04 Key Factoring Example Only

Tuesday, September 17, 2019 11:24 AM

Factoring Practice
Example Factor $4 x^{2}-3 x-7$
Solution: The first step is to multiply the first and last coefficients: $(4)(-7)=-28$. We need the factors of -28 whose sum is -3 . The factors of 28 are: 1 \& 28,2 \& 14 , and 4 \& 7. The factors needed are $4 \&-7$ (remember the sum must be -3). We now re-write the middle term of the trinomial and factor by grouping:

$$
\begin{gathered}
4 x^{2}-3 x-7 \\
4 x^{2}+4 x-7 x-7 \\
4 x(x+1)-7(x+1) \\
(x+1)(4 x-7)
\end{gathered}
$$

1) $7 m^{2}+6 m-1$

$$
\begin{array}{ll}
A C=-7 \\
B=6 & =7 m(m+1)-1(m+1) \\
7,-1 & (m+1)(7 m-1)
\end{array}
$$

2) $3 k^{2}-10 k+7$

$$
\begin{aligned}
& A C=21 \\
& B=-10 \\
& -3,-7
\end{aligned}=3 k(k-1)-7 C k-7
$$

4) $2 r^{2}+7 r-30$

$$
\begin{array}{ll}
A C=-60 & 2 r^{2}+12 r-5 r-30 \\
B=7 & =2 r(r+6)-5(r+6) \\
12,-5 & (r+6)(2 r-5)
\end{array}
$$

5) $5 x^{2}-14 x+8$

$$
\begin{array}{rl}
A C=40 & 5 x^{2}-10 x-4 x+8 \\
B=-14 & 5 x(x-2)-4(x-2) \\
-10,-4 & (x-2)(5 x-4)
\end{array}
$$

6) $4 x^{2}-4 x-15$

Factoring Practice (Shortcut AC Method)

1) $7 m^{2}+6 m-1$

$$
\begin{array}{ll}
A C=-7 & \left(\frac{7 m}{7}+\frac{7}{7}\right)(7 m-1) \\
B=6 & (m+1)(7 m-1) \\
7,-1 & (m+1
\end{array}
$$

3) $3 n^{2}-16 n+20$

$$
\begin{array}{rr}
A C=60 & (3 n-10)\left(\frac{3 n}{3}-\frac{6}{3}\right) \\
B=-16 & (3 n-10)(n-2)
\end{array}
$$

5) $5 x^{2}-14 x+8$

$$
\begin{array}{ll}
A C=40 & \left(\frac{5 x-10}{5}\right)(5 x-4) \\
B=-14 & (x-2)(5 x-4)
\end{array}
$$

6) $4 x^{2}-4 x-15$

$$
\begin{aligned}
& A C=-60 \\
& B=-4
\end{aligned}
$$

$$
-10,6
$$

