Trigonometry Angles Practice

Name: _____

1.Change the degree measures to radians. Give answers as both exact and approximate measures correct to one decimal place.

a) 150° **b**) 310°

2. Change the radian measures to degrees. Round to two decimal places if necessary.

a)
$$\frac{4\pi}{5}$$
 b) $\frac{5\pi}{6}$

c) 6 **d**)
$$-2.5$$

3. Determine the two next positive angles that are coterminal with the given angle.

a) 450°	b)	$\frac{\pi}{5}$
a) 450°	b)	$\frac{\pi}{5}$

4. Find the first *negative* angle that is coterminal with each given angle.

a)
$$40^{\circ}$$
 b) $\frac{9\pi}{4}$

- 5. Write an expression that gives *all* angles coterminal to each given angle.
 - **a**) 75° **b**) $\frac{\pi}{3}$
- 6. Draw each angle in standard position. Name the quadrant in which the angle lies.

a) $\frac{2\pi}{3}$	b)	$\frac{3\pi}{4}$
3		4

c) $\frac{\pi}{6}$

d) π

7. A circle with a radius of 16.2 cm is drawn on a large piece of cardboard. A central angle of 74° is drawn. What is the length of the arc subtended by this angle, rounded to the nearest tenth of a cm?

8. The radius of a circle is 7 cm, and the length of an arc on the circle is 10 cm. In radians, what is the central angle that subtends this arc length? Give your answer correct to 2 decimal places.

9. For each picture below, find:

- the measure of the standard-position angle in degrees
- the measure of the standard-position angle in radians
- the coordinates of the point where the terminal arm of the angle intersects the unit circle

