Chapter 4 Hand-in Assignment - Trigonometry

Name:
Unless a question says differently, round to 2 decimal places when rounding is necessary.

1. Convert each angle to degree measure.
a) $\frac{7 \pi}{8}$
b) 4.2 radians
2. Convert each angle to radian measure, in simplest exact form. (Answers will include π)
a) -200°
b) 1040°
3. Convert each angle to radian measure, in approximate form.
a) 258°
b) -95°
4. Find the arc length subtended by an angle measuring 81° in a circle with radius 18 cm .
5. Suppose that a clock's pendulum has a length of 15 cm , and it swings back and forth, making an arc of 22 cm . What angle does the pendulum pass through in one swing, in degree measure?
6. For each angle below:

- graph it in standard position
- find the measure of one angle that is coterminal to the given angle
- find the reference angle to the given angle
a) $\frac{5 \pi}{8}$
b) -220°
(Give coterminal \& reference angles
in exact radian measure)

Coterminal:
Reference:
(Give coterminal \& reference angles in degree measure)

Coterminal:
Reference:
7. Find the x-coordinate of all points on the unit circle that have a y-coordinate of $\frac{2}{5}$.

Give answers in fractional form, not decimal form.
8. Find each value, correct to three decimal places. (Use a calculator!)
a) $\csc 185^{\circ}$
b) $\cot \left(\frac{3 \pi}{7}\right)$
9. Find the EXACT (x, y) coordinates where the terminal arm of each angle listed below intersects the unit circle:
a) $\frac{5 \pi}{3}$
b) $-\frac{7 \pi}{6}$
c) $-\frac{3 \pi}{4}$
10. Find the angle measure, in BOTH radians and degrees, that corresponds with each point on the unit circle:
a) $\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$
b) $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
c) $\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$
11. Suppose the terminal arm of a standard position angle θ passes through the point $(3,-8)$. Find the exact value of all six trigonometric ratios for angle θ, in fractional form.
12. Find the exact value of all six trigonometric ratios for each angle θ. Give answers in simple form (no complex fractions).

$$
\sin \theta=\quad \cos \theta=\quad \tan \theta=
$$

a) $\frac{3 \pi}{4}$

$$
\csc \theta=\quad \sec \theta=\quad \cot \theta=
$$

$$
\sin \theta=\quad \cos \theta=\quad \tan \theta=
$$

b) $-\pi$

$$
\csc \theta=\quad \sec \theta=\quad \cot \theta=
$$

$\sin \theta=\quad \cos \theta=\quad \tan \theta=$
c) 330°
$\csc \theta=$
$\sec \theta=$
$\cot \theta=$
14. Solve these trigonometric equations algebraically.

- Give answers in EXACT form when possible.
- If domain is in radians, give answers in radian measure
a) $\cos \theta=\frac{\sqrt{3}}{2}, 0 \leq \theta<2 \pi$
b) $\cos \theta=-0.813$, for $0 \leq \theta<2 \pi$
c) $\sin \theta=0.247$, for $0^{\circ} \leq \theta \leq 720^{\circ}$
d) $2 \cos \theta+1=-1,0 \leq \theta<2 \pi$
e) $4 \sin ^{2} \theta-3=0,0^{\circ} \leq \theta<360^{\circ}$
f) $\sqrt{2} \cos ^{2} \theta-\cos \theta=0,0 \leq \theta<2 \pi$
g) $2 \tan ^{2} \theta-7 \tan \theta+3=0,0^{\circ} \leq \theta<720^{\circ}$

