Chapter 4 Hand-in Assignment – Trigonometry

Name:

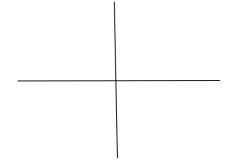
Unless a question says differently, round to 2 decimal places when rounding is necessary.

- 1. Convert each angle to degree measure.
- a) $\frac{7\pi}{8}$ b) 4.2 radians
- 2. Convert each angle to radian measure, in simplest *exact form*. (Answers will include π)
- a) -200° b) 1040°
- 3. Convert each angle to radian measure, in *approximate form*.

a) 258° b) -95°

4. Find the arc length subtended by an angle measuring 81° in a circle with radius 18 cm.

5. Suppose that a clock's pendulum has a length of 15 cm, and it swings back and forth, making an arc of 22 cm. What angle does the pendulum pass through in one swing, in *degree measure*?


6. For each angle below:

- graph it in standard position
- find the measure of one angle that is *cotermina*l to the given angle
- find the *reference angle* to the given angle

a)
$$\frac{5\pi}{8}$$
 b) -220°

(Give coterminal & reference angles in exact radian measure)

(Give coterminal & reference angles in degree measure)

Coterminal:

Coterminal:

Reference:

Reference:

7. Find the *x*-coordinate of all points on the unit circle that have a *y*-coordinate of $\frac{2}{5}$. Give answers in fractional form, not decimal form.

8. Find each value, correct to <u>three decimal places</u>. (Use a calculator!) a) csc185° b) cot $\left(\frac{3\pi}{7}\right)$

9. Find the EXACT (x, y) coordinates where the terminal arm of each angle listed below intersects the unit circle:

a)
$$\frac{5\pi}{3}$$
 b) $-\frac{7\pi}{6}$ c) $-\frac{3\pi}{4}$

10. Find the angle measure, in BOTH radians and degrees, that corresponds with each point on the unit circle:

a)
$$\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$$
 b) $\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)$ c) $\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$

11. Suppose the terminal arm of a standard position angle θ passes through the point (3,-8). Find the exact value of all six trigonometric ratios for angle θ , in fractional form.

12. Find the *exact value* of all six trigonometric ratios for each angle θ . Give answers in simple form (no complex fractions).

$$\sin \theta = \cos \theta = \tan \theta =$$
a) $\frac{3\pi}{4}$
 $\csc \theta = \sec \theta = \cot \theta =$

	$\sin \theta =$	$\cos\theta =$	$\tan \theta =$	4
b) -π	$\csc \theta =$	$\sec \theta =$	$\cot \theta =$	
	$\sin \theta =$	$\cos \theta =$	$\tan \theta =$	
c) 330°	$\csc \theta =$	$\sec\theta =$	$\cot \theta =$	

14. Solve these trigonometric equations algebraically.

- Give answers in EXACT form when possible.
- If domain is in radians, give answers in radian measure

a)
$$\cos\theta = \frac{\sqrt{3}}{2}, \ 0 \le \theta < 2\pi$$

b)
$$\cos\theta = -0.813$$
, for $0 \le \theta < 2\pi$

d)
$$2\cos\theta + 1 = -1$$
, $0 \le \theta < 2\pi$

e)
$$4\sin^2\theta - 3 = 0, 0^\circ \le \theta < 360^\circ$$

f) $\sqrt{2}\cos^2\theta - \cos\theta = 0$, $0 \le \theta < 2\pi$

g)
$$2\tan^2\theta - 7\tan\theta + 3 = 0$$
, $0^\circ \le \theta < 720^\circ$