Chapter 8 Hand-in Assignment - Logarithms

Name:

1. Describe how the graph of each logarithmic function can be obtained from the graph of $y=\log _{2} x$.
a) $y=\log _{2}(-5(x+4))-1$
b) $y=2 \log _{2}(x-7)+4$
2. For each graph, the solid curve is a transformation of the dashed curve. Write the equation of each solid graph.
a)

b)

3. Given the base function $y=\log _{2} x$ and its transformed function, $y=-2 \log _{2}(x+4)-1$ do the following:

- List the transformations that will occur and give the mapping notation
- Complete the tables, showing 5 key points for each table. Include mapping notation on the table heading.

- On the provided grid, sketch and label the original and transformed graphs.
- For the transformed function, give
- Domain
- Range
- The equation of its asymptote
- The coordinates of its x-intercept and y-intercept

4. The graph of $y=\log _{3} x$ has been transformed as described below. Give the equation of each transformed function:
a) $y=\log _{3} x$ is expanded vertically by a factor of 4 , expanded horizontally by a factor of 3 , reflected across the y-axis, and is translated 2 left and 5 down.
b) $y=\log _{3} x$ is compressed vertically by a factor of $1 / 2$, expanded horizontally by a factor of 8 , reflected across the x-axis, and is translated 3 right and 6 up.
5. Write in logarithmic form.
a) $4^{-2}=0.0625$
b) $5^{3}=r+6$
c) $e^{x}=8$
6. Write in exponential form.
a) $\log _{2} 512=9$
b) $\ln (16)=t$
c) $\log _{2}(a-4)=b$
7. Use the definition of logarithms to find the value of each expression below.
a) $\log _{3} 81$
b) $\log _{4}\left(\frac{1}{64}\right)$
8. Solve the following equations for x. If answer is not exact, give it correct to $\mathbf{2}$ decimal places.
a) $\log _{4}(x-8)=5$
b) $\log _{x}(18)=\frac{3}{4}$
c) $\ln (x)+\ln (8)=\ln 32$
d) $\log _{6}\left(3 x^{7}\right)-\log _{6}\left(x^{6}\right)=2$
9. Evaluate each of the following on your calculator. Give answers correct to 4 decimal places.
a) $\log _{7} 18$
b) $4 \log _{3} 29$
c) $2 \ln 53$
10. Evaluate each of the following.
a) $\quad \log _{8} 8$
b) $\quad \log _{16} 1$
c) $\quad \log _{3} 3^{5}$
d) $\quad 7^{\log _{7} 13}$
e) $\quad \ln e^{3}$
f) $\quad \ln (1)$
11. Use logarithm laws to expand the following logarithms completely.
a) $\log _{2}\left(\frac{8 x^{4} \sqrt{y}}{w^{3}}\right)$
b) $\log _{3}\left(\frac{\sqrt[4]{x}}{y z^{2}}\right)$
12. Use logarithm laws to condense each expression into a single logarithm.
a) $3 \log 2 x-5 \log x-\log 2+8 \log x$
b) $\frac{\log (x-7)}{\log 5}$
13. Determine the value of $\log _{2}\left(16 a^{3} b^{2}\right)$ if $\log _{2} a=5$ and $\log _{2} b=4$.
14. Solve each equation for x. Reject extraneous solutions. Give answers correct to $\underline{\mathbf{2} \text { decimal }}$ places.
a) $\log _{4}(2 x+1)-\log _{4} 3=\log _{4} 11$
b) $\log _{2} x=3-\log _{2}(x+2)$
c) $\log _{5}(3 x+1)+\log _{5}(x-3)=3$
15. Solve each equation for x. Give answers correct to $\mathbf{2}$ decimal places.
a) $e^{x+3}=45$
b) $2^{x+5}=5^{3 x-4}$
c) $6^{2 x+5}=3\left(7^{8-x}\right)$
16. An investment of $\$ 2000$ pays interest at a rate of 1.5% per year. Determine how long it takes for the investment to grow to $\$ 3000$, if the interest is compounded quarterly. Solve algebraically, not graphically.
17. A type of bacteria doubles every 3 days. How long would it take a sample of 400 cells to grow to 9,000 cells?
18. A sample of a radioactive substance decays from 400 mg to 80 mg in 76 days. What is the half-life of this substance? Solve algebraically. Express your answer correct to two decimal places.
19. Suppose that solution A is 500 times as acidic as than solution B . If we know the pH of solution B is 9.1 , what is the pH of solution A ?
20. An earthquake in California measured 4.8 on the Richter scale. Another earthquake near Japan was 300 times more intense. What was the Richter scale reading for the earthquake near Japan?
21. The loudness level of a vacuum cleaner is 75 dB and that of a chainsaw is 110 dB . How many times as loud as a vacuum cleaner is a chainsaw?
22. The population of Toronto is given by $P(t)=4,000,000 e^{0.012 t}$, where $t=0$ corresponds to the year 2000. In what year will the population reach $5,800,000$?
