Logarithms - Investigation

Part I:
Evaluate the expressions on the left, using your understanding of logs.
Re-write each of your answers as a single logarithm, as shown in the example.
Example: $\log _{4}(16)+\log _{4}(4)=2+1=3 \quad$ This answer, 3 , is equal to $\log _{4}(64)$ We've shown that: $\log _{4}(16)+\log _{4}(4)=\log _{4}(64)$

1) $\log _{2}(8)+\log _{2}(4)=$ \qquad $\log _{2}(\quad)$
2) $\log _{3}(9)+\log _{3}(81)=$
3) $\log _{3}\left(\frac{1}{9}\right)+\log _{3}(81)=$ \qquad
these can be written as...
4) $\log _{5}(5)+\log _{5}(1)=$ \qquad $\log _{3}(\quad)$ $\log _{5}(\quad)$

$$
\log _{c} X+\log _{c} Y=\log _{c}(\quad)
$$

Below are some questions that we can't answer directly with the definition of logarithms. Use the pattern discovered above to write each one as a single logarithm, then evaluate it
6) $\log _{6} 12+\log _{6} 3$
7) $\log 250+\log 40$
8) $\log _{8}\left(\frac{1}{\mathrm{M}}\right)+\log _{8}\left(\frac{1}{3}\right)$

Logarithms - Investigation

Part I:
Evaluate the expressions on the left, using your understanding of logs.
Re-write each of your answers as a single logarithm, as shown in the example.
Example: $\log _{4}(16)+\log _{4}(4)=2+1=3 \quad$ This answer, 3 , is equal to $\log _{4}(64)$ We've shown that: $\log _{4}(16)+\log _{4}(4)=\log _{4}(64)$

1) $\log _{2}(8)+\log _{2}(4)=5$
$\log _{2}(32)=5$
$3+2$
2) $\log _{3}(9)+\log _{3}(81)=6 \quad \log _{3}(729)=6$
3) $\log _{3}\left(\frac{8}{2}\right)+\log _{3}(81)=2 \quad \log _{3}(9)=2$
$-2+4$
$\log _{5}(5)=1$
4) What pattern seems to hold? Write a rule:

$$
\log _{c} X+\log _{c} Y=\log _{c}(X Y)
$$

Below are some questions that we can't answer directly with the definition of logarithms. Use the pattern discovered above to write each one as a single logarithm, then evaluate it.

$\text { 6) } \begin{aligned} \log _{6} 12+\log _{6} 3 & =\log _{6}(12 \cdot 3) \\ & =\log _{6}(36)=2 \end{aligned}$	This result links to an exponent law we already know:
$\text { 7) } \begin{aligned} \log 250+\log 40 & =\log (250 \cdot 40) \\ & =\log (10000) \\ & =4 \end{aligned}$	$\log _{c} x=a$ means $C^{a}=x$
$\text { 8) } \begin{aligned} \log _{8}\left(\frac{2}{4}\right)+\log _{8}\left(\frac{1}{8}\right) & =\log _{8}\left(\frac{3}{64} \cdot \frac{1}{3}\right) \\ & =\log _{8}\left(\frac{1}{64}\right) \\ & =\log _{8}\left(\frac{1}{8^{2}}\right) \\ & =\log _{8}\left(8^{-2}\right)=-2 \end{aligned}$	

Part II:
Evaluate the expressions on the left, using your understanding of logs.
Re-write each of your answers as a single logarithm, as shown in the example.
Example: $\log _{4}(64)-\log _{4}(16)=3-2=1 \quad$ This answer, 1 , is equal to $\log _{4}(4)$
We've shown that: $\quad \log _{4}(64)-\log _{4}(16)=\log _{4}(4)$
9) $\log , 625-\log _{,} 5=$ \qquad $\log _{5}(\quad)$
10) $\log _{6} 36-\log _{6} 6=$ \qquad $\log _{6}(\quad)$
11) $\log _{3} 9-\log _{3} 1=$ \qquad which is the same as $\log _{3}(\quad)$
12) $\log _{2} 16-\log _{2} 32=$ \qquad $\log _{2}(\quad)$
13) What pattern seems to hold? Write a rule:

$$
\log _{c} X-\log _{c} Y=\log _{c}(\quad)
$$

Below are more questions that we can't answer directly with the definition of logarithms. Use the new pattern discovered above to write each one as a single logarithm, then evaluate it
14) $\log _{6} 72-\log _{6} 2$
15) $\log 12-\log 0.12$
16) $\log _{12} 2-\log _{12} 288$

Part II:
Evaluate the expressions on the left, using your understanding of logs Re-write each of your answers as a single logarithm, as shown in the example.

Example: $\log _{4}(64)-\log _{4}(16)=3-2=1 \quad$ This answer, 1 , is equal to $\log _{4}(4)$

$$
\text { We've shown that: } \quad \log _{4}(64)-\log _{4}(16)=\log _{4}(4)
$$

9) $\log _{5} 625-\log _{5} 5=3$
$\log _{9}(125)=3$
10) $\log _{6} \frac{36-\log _{6} 6}{2-1}=1$
$\log _{6}(6)=1$
11) $\log _{3} 9-\log _{1} 1=2$
$\log _{3}(9)=2$
2-0
$\log _{2}\left(\frac{1}{2}\right)-1$
$\log _{2} 16-\log _{2}$
$4-5$
12) What pattern seems to hold? Write a rule

$$
\log _{c} X-\log _{c} Y=\log _{c}\left(\frac{X}{Y}\right)
$$

Below are more questions that we can't answer directly with the definition of logarithms. Use the new pattern discovered above to write each one as a single logarithm, then evaluate it.
14) $\log _{6} 72-\log _{6} 2=\log _{6}\left(\frac{72}{2}\right)$

$$
=\log _{6}(36)=2
$$

15) $\log 12-\log 0.12=\log \left(\frac{12}{0.12}\right)$

$$
=\log (100)=2
$$

16) $\log _{12} 2-\log _{12} 288=\log _{12}\left(\frac{2}{288}\right)$

$$
=\log _{12}\left(\frac{1}{144}\right)
$$

$$
=\log _{12}\left(\frac{1}{12^{2}}\right)
$$

$$
=\log _{12}\left(12^{-2}\right)=-2
$$

This result also links to an exponent law we already know: $\left.\begin{array}{l}\log _{c} x=a \text { means } c^{a}=x \\ \log _{c} y=b \text { means } c^{b}=y\end{array}\right\} \begin{aligned} & \text { definition } \\ & \text { of } \\ & \log a_{i t i m n}\end{aligned}$ $\log _{c} t=b$ $\log _{C}\left(\frac{X}{Y}\right)$
$=\log _{c}\left(c^{a^{-b}}\right)+\underbrace{-2 m a n}$
$=a-b\}$ dethuntoon of logmitm
$=\log _{c} x-\log _{c} y$

Your Turn

Use the laws of logarithms to simplify and evaluate each expression.
b) $\underbrace{\log _{5} 1000-\log _{5} 4}-\log _{5} 2$

$$
\begin{aligned}
& =\log _{5}\left(\frac{1000}{4}\right)-\log _{5} 2 \\
& =\log _{5}(250)-\log _{5} 2 \\
& =\log _{5}\left(\frac{250}{2}\right) \\
& =\log _{5} 125=3
\end{aligned}
$$

c) $2 \log _{3} 6-\frac{1}{2} \log _{3} 64+\log _{3} 2$
$=\log _{3} 6^{2}-\log _{3} 64^{1 / 2}+\log _{3} 2$
$=\log _{3} 36-\log _{3} 8+\log _{3} 2$
$=\log _{3}\left(\frac{36}{8}\right)+\log _{3} 2$
$=\log _{3}\left(\frac{36 \times 2}{8}\right)$

$$
=\log _{3}\left(\frac{72}{8}\right)=\log _{3} 9=2
$$

