C_20 Key and Unit 3 Revised Practice Test

W \boldsymbol{W} C_2 Unit 3 Practice Test

Scroll down for solutions

PreCalc 12 - Unit 3 Practice Test

Name:

\qquad

1. Solve: $7=2^{x+1}$
A. -0.64
B. 1.36
C. 1.81
D. 3.81
2. The population in a community is increasing at an annual rate of 6.5%. Assume this trend will continue. In how many years will the present population of 12000 grow to 32000 ?
A. $\quad 15.5$
B. $\quad 15.6$
C. $\quad 15.8$
D. 16.1
3. In a study which compared the pH of urine and tears, the following data was collected. On average, how many times more alkaline are tears than urine?
A. $\quad 1.3$
B. $\quad 1.5$
C. $\quad 15.0$
D. 31.6
4. Solve $2^{3 x-1}=8^{2 x+1}$.

	Urine	Tears
Joe	6.2	7.6
Bob	6.3	7.4
Bill	5.5	7.5
Average	$\mathbf{6 . 0}$	$\mathbf{7 . 5}$

A. $x=-\frac{4}{3}$
B. $x=-1$
C. $x=-\frac{2}{3}$
D. $x=-\frac{3}{4}$
5. Simplify fully: $\log \left(\frac{x^{2}}{10 y^{3}}\right)$
A. $2 \log x-1-3 \log y$
B. $2 \log x-1+3 \log y$
C. $2 \log x-10-3 \log y$
D. $2 \log x-10+3 \log y$
6. Evaluate: $\log _{3} \sqrt{27}$.
A. $\frac{2}{9}$
B. $\frac{2}{3}$
C. $\frac{3}{2}$
D. $\frac{9}{2}$
7. Determine the x-intercept for the graph of $y=5^{x}-3$.
A. -2
B. 0.008
C. 0.6
D. 0.68
8. Express as a single $\log a r i t h m: ~ \log a-\log b-3 \log c$
A. $\quad \log \frac{a}{b c^{3}}$
B. $\quad \log \frac{a}{b^{3} c^{3}}$
C. $\quad \log \frac{a c^{3}}{b}$
D. $\quad \log \frac{a c^{3}}{b^{3}}$
9. An investment earns 2.25% per year compounded daily. How many years would be required for an investment to triple in value? (Assume all years have 365 days.)
A. 4.88 years
B. 5.41 years
C. 48.83 years
D. 49.37 years
10. What is the value of $\log _{3} 30$?
A. 3.1
B. $\quad 3.4$
C. 3.6
D. 3.9
11. Determine the Richter scale reading for an earthquake that is 5 times more intense than another earthquake that measures 4.0 on the Richter scale.
A. 9
B. 20
C. $4+\log 5$
D. $5+\log 4$
12. Determine the domain of the function $y=\log \left(4-x^{2}\right)$
A. $-2<x<2$
B. $-2 \leq x \leq 2$
C. $x<-2, x>2$
D. $x \leq-2, x \geq 2$
13. Write $3^{y}=73$ in logarithmic form.
A. $73=\log _{3} y$
B. $73=\log _{y} 3$
C. $3=\log _{y} 73$
D. $3=\log _{73} y$
E. $y=\log _{3} 73$
14. Find the value of x if $\log _{x} 18=2$.
A. $2 \sqrt{3}$
B. $3 \sqrt{2}$
C. 9
D. $18 \sqrt{2}$
E. 324
15. Which of the following is the inverse relation of $y=\log 3 x$?
A. $y=3^{x}$
B. $y=3 x$
C. $y=\frac{1}{\log 3 x}$
D. $y=\frac{10^{x}}{3}$
E. $y=\log _{3 x} 10$
16. Write as a single logarithm: $3 \log 2-\frac{1}{2} \log 16$
A. $\log 1$
B. $\log 2$
C. $\log \frac{3}{4}$
D. $\log \frac{9}{4}$
E. $\frac{3}{2} \log 32$
17. Simplify: $\log _{a}(b c)-\log _{a}\left(\frac{c}{b}\right)$
A. $\left(\log _{a} b\right)^{2}$
B. $2 \log _{a}(b)$
C. $\log _{a}(2 b)$
D. $a \log b^{2}$
E. 0
18. Which of the following is a simplified value of $\frac{\log x^{2}+\log x^{5}}{\log x^{5}-\log x^{3}}$?
A. $\frac{7}{2}$
B. $\frac{10}{2}$
C. $\frac{\log 7}{\log 2}$
D. $\frac{\log 10}{\log 2}$
E. $\frac{\log 7 x}{\log 2 x}$
19. Which of the following is equal to $\log x$ if $x=\frac{a b}{\sqrt[4]{c}}$?
A. $\log a+\log b-\log 4 c$
B. $\log a+\log b-4 \log c$
C. $\log a+\log b-\frac{1}{4} \log c$
D. $\frac{\log a+\frac{1}{4} \log b}{\log c}$
E. $\frac{\log a+4 \log b}{\log c}$
20. Find the exact value of t given that $7^{2 t}=3^{5}$.
A. $5 \log 3-2 \log 7$
B. $\frac{3^{5}}{49}$
C. $\frac{5 \log 3}{2 \log 7}$
D. $3^{5}-49$
E. $3 \log 5-7 \log 2$
21. A bacteria population doubles every 9 days. Determine an expression for the number of bacteria N after t days, given an initial amount of 500 bacteria.
A. $\quad N=500(9)^{1 / 9}$
B. $\quad N=500(2)^{1 / 9}$
C. $N=500(9)^{1 / 2}$
D. $N=500(2)^{9 t}$
E. $\quad N=500(9)^{2 t}$
22. Determine the initial investment needed, P, if an interest rate of 12% per year compounded quarterly yields \$1000 in 5 years.
A. $P=\frac{1000}{1.03^{5}}$
B. $\quad P=\frac{1000}{1.04^{5}}$
C. $\quad P=\frac{1000}{1.03^{20}}$
D. $\quad P=\frac{1000}{1.04^{20}}$
23. The half-life of a radioactive substance is 14 years. Determine an expression for the mass of the substance remaining from 50 grams, after t years have gone by
A. $\quad 0.5(50)^{14 / t}$
B. $50\left(\frac{1}{2}\right)^{14 / t}$
C. $0.5(50)^{/ / 14}$
D. $50\left(\frac{1}{2}\right)^{t / 14}$
24. A strain of bacteria triples every 5 days. Determine an expression for the initial number of bacteria if after t days, 200 bacteria are present.
A. $\quad A=\frac{200}{3^{1 / 5}}$
B. $\quad A=\frac{200}{3^{5 / /}}$
C. $\quad A=200(3)^{1 / 5}$
D. $A=200(3)^{5 / t}$

Written Questions

1. Solve algebraically: $\quad \log _{15}(3-x)+\log _{15}(1-x)=1$
2. A food sample contains 300 bacteria. The doubling time for bacteria left at room temperature is 20 minutes. How many minutes will it take to reach an unsafe level of 100000 bacteria?
Solve algebraically using logarithms. Give answer as a decimal accurate to 2 decimal places.
3. Given the function $y=\log _{3}(x+2)-2$.
a) Graph the function. Clearly show at least 4 points on the curve and state the equation of the asymptote.
b) Calculate the x-intercept of this function.

Answers:

1. C
2. B
3. D
4. A
5. A
6. C
7. D
8. A
9. C
10. A
11. C
12. A
13. E
14. B
15. D
16. B
17. B
18. A
19. C
20. C
21. B
22. C
23. D
24. A
25. $x=-2$
26. $\quad 167.62$ minutes

3b) $x=7$

PreCalc 12 - Unit 3 Practice Test

Name:

1. Solve: $7=2^{x+1}$
A. -0.64
B. 1.36
(C.) 1.81
D. $\quad 3.81$

$$
\begin{aligned}
& \log 7= \log 2^{x+1} \\
& \frac{\log 7}{\log 2}= \frac{(x+1) \log 2}{\log 2} \\
& x+1=\frac{\log 7}{\log 2}
\end{aligned}
$$

2. The population in a community is increasing at annual ate f 6.5%. assume this trend will continue. In how many years will the present population of 12000 grow 32000 ?
A. $\quad 15.5$

$$
\begin{aligned}
& \frac{32000}{12000}=\frac{12000}{12000}(1.065)^{t} \\
& \frac{32}{12}=1.065^{t} \\
& \log \left(\frac{32}{12}\right)={ }^{4} \log 1.065^{t}
\end{aligned}
$$

C. 15.8
D. 6.1
3. In a study which compared the pH of urine and tears, the following data was collected. On average, how many times more alkaline are tears than urine?
A. $\quad 1.3$
B. $\quad 1.5$
C. $\quad 15.0$
(D.) 31.6
$\log \left(\frac{32}{12}\right)=t \log 1.065 \quad t=\frac{\log \left(\frac{32}{12}\right)}{\log 1.065}$

		$l=15.574$
	Urine	Tears
Joe	6.2	7.6
Bob	6.3	7.4
Bill	5.5	7.5
Average	$\mathbf{6 . 0}$	7.5

$$
\begin{aligned}
& I=I_{0}(10)^{7.5-6.0} \\
& I=I_{0}(10)^{1.5} \\
& I \cong I_{0}(31.62277 \ldots)
\end{aligned}
$$

4. Solve $2^{3 x-1}=8^{2 x+1}$.
(A.)
$x=-\frac{4}{3}$
B. $x=-1$
C. $x=-\frac{2}{3}$
D. $x=-\frac{3}{4}$

$$
\begin{array}{ll}
2^{3 x-1}=\left(2^{3}\right)^{2 x+1} \\
2^{3 x-1}=2^{6 x+3}
\end{array} \quad \begin{array}{ll}
3 x-1 & =6 x+3 \\
-6 x+2 \\
-3 x & =\frac{4}{-3} \\
-3
\end{array}
$$

5. Simplify fully: $\log \left(\frac{x^{2}}{10 y^{3}}\right)$
(A.) $2 \log x-1-3 \log y$
B. $2 \log x-1+3 \log y$
C. $2 \log x-10-3 \log y$
D. $2 \log x-10+3 \log y$

$$
\begin{aligned}
\log \left(\frac{x^{2}}{10 y^{3}}\right) & =\log x^{2}-\log 1 \log y^{3} \\
& =2 \log x-\left[\log 10+\log y^{3}\right] \\
& =2 \log x-\log 10-3 \log y \\
& =2 \log x-1-3 \log y
\end{aligned}
$$

6. Evaluate: $\log _{3} \sqrt{27}$.
A. $\frac{2}{9}$
B. $\frac{2}{3}$
(C.) $\frac{3}{2}$
D. $\frac{9}{2}$

$$
\begin{aligned}
\log _{3} \sqrt{27} & =\log _{3} \sqrt{3^{3}} \\
& =\log _{3}\left(3^{3 / 2}\right) \\
& =\frac{3}{2}
\end{aligned}
$$

7. Determine the x-intercept for the graph of $y=5^{x}-3$.
A. -2
B. $\quad 0.008$
C. 0.6
(D.) 0.68

For x-intercept, let $y=0$

$$
\begin{aligned}
& 0=5^{x}-3 \\
&+3 \\
& 3=5^{x} \\
& \log 3=\sqrt{ } \log 5^{x} \\
& \frac{\log 3}{\log 5}=\frac{x \log 5}{\log 5}
\end{aligned}
$$

8. Express as a single $\operatorname{logarithm:~} \log a-\log b-3 \log c$
A. $\log \frac{a}{b c^{3}}$
B. $\quad \log \frac{a}{b^{3} c^{3}}$
C. $\log \frac{a c^{3}}{b}$
D. $\quad \log \frac{a c^{3}}{b^{3}}$

$$
\begin{aligned}
& \log \left(\frac{a}{b}\right)-\log c^{3} \\
= & \log \left(\frac{\frac{a}{b}}{c^{3}}\right) \\
= & \log \left(\frac{a}{b} \cdot \frac{1}{c^{3}}\right)
\end{aligned}
$$

9. An investment earns 2.25% per year compounded daily. How many years would be required for an investment toxiptern value? (Assume all years have 365 days.)
$\begin{aligned} \text { rate } & =1+\frac{0.0225}{365} \\ & =1.00006644\end{aligned}$
A. 4.88
365
00061644
$=1.000061644$
(C.) 48.83 years
D. 49.37 years If origned amount is \$1, how long until we have \$3?
$3=1(1.000061644)$
$\log 3={ }^{r} \log (1.000061644)^{n}$
$\frac{\log 3}{10510066644}=\frac{n(\log 1.00066644)}{n}$
$n=\frac{\log 3}{\log 1.00066164 y}$
10. What is the value of $\log _{3} 30$?

$$
\begin{aligned}
& n=17822.43446 \text { days, } \\
& \text { dvididy by } 365, n=4883 \text { year }
\end{aligned}
$$

A.
3.1
B. $\quad 3.4$
C. $\quad 3.6$
D. 3.9

$$
\begin{aligned}
\log _{3} 30 & =\frac{\log 30}{\log 3} \\
& =3.095
\end{aligned}
$$

11. Determine the Richter scale reading for an earthquake that is 5 times more intense than another earthquake that measures 4.0 on the Richter scale.
A. 9
B. 20
C.
$4+\log 5$
D. $5+\log 4$

$$
\begin{aligned}
& I=I_{0}(10)^{R-r} \\
& S_{0}=I_{6}(10)^{R-4}
\end{aligned}
$$

$$
\begin{aligned}
\log 5= & { }^{5} \log 10^{R-4} \\
\log 5= & (R-4) \log 10 \\
\log 5= & R-4 \\
& R=\log (5)+4
\end{aligned}
$$

12. Determine the domain of the function $y=\log \left(4-x^{2}\right)$
(A.) $-2<x<2$
B. $-2 \leq x \leq 2$
C. $x<-2, x>2$
D. $x \leq-2, x \geq 2$

13. Write $3^{y}=73$ in logarithmic form.
A. $73=\log _{3} y$
B. $73=\log _{y} 3$
C. $3=\log _{y} 73$
D. $3=\log _{73} y$ E. $y=\log _{3} 73$
14. Find the value of x if $\log _{x} 18=2$.
A. $2 \sqrt{3}$
(B. $3 \sqrt{2}$
C. 9
D. $18 \sqrt{2}$
E. 324

$$
\begin{aligned}
\log _{x} 18 & =2 \\
x^{2} & =18 \\
x & =\sqrt{18} \\
x & =\sqrt{3 \cdot 3 \cdot 2} \quad \longrightarrow x=3 \sqrt{2}
\end{aligned}
$$

15. Which of the following is the inverse relation of $y=\log 3 x$?
A. $y=3^{x}$
B. $y=3 x$
C. $y=\frac{1}{\log 3 x}$
(D. $y=\frac{10^{x}}{3}$
E. $y=\log _{3 x} 10$
inverse of $y=\log 3 x$ is

$$
x=\log 3 y
$$

$$
\text { change form: } \begin{aligned}
10^{x} & =3 y \\
y & =\frac{10^{x}}{3}
\end{aligned}
$$

16. Write as a single logarithm: $3 \log 2-\frac{1}{2} \log 16$
A. $\log 1$
(B. $\quad \log 2$
C. $\log \frac{3}{4}$
D. $\log \frac{9}{4}$
E. $\frac{3}{2} \log 32$
$3 \log 2-\frac{1}{2} \log 16$
$=\log 2^{3}-\log 16^{1 / 2}$
$=\log 8-\log \sqrt{16}$
$=\log 8-\log 4$

$$
\begin{aligned}
& =\log \left(\frac{8}{4}\right) \\
& =\log 2
\end{aligned}
$$

17. Simplify: $\log _{a}(b c)-\log _{a}\left(\frac{c}{b}\right)$
A. $\left(\log _{a} b\right)^{2}$
(B. $2 \log _{a}(b)$
C. $\log _{a}(2 b)$
D. $a \log b^{2}$
E. 0

$$
\begin{aligned}
\log _{a}\left(\frac{b c}{\frac{c}{b}}\right) & =\log _{a}\left(\frac{\left.b c \cdot \frac{b}{c}\right)}{1}\right) \\
& =\log _{a}\left(\frac{b^{2} c}{8}\right) \\
& =\sqrt{ } \log _{a} b^{2} \\
& =2 \log _{a} b
\end{aligned}
$$

18. Which of the following is a simplified value of $\frac{\log x^{2}+\log x^{5}}{\log x^{5}-\log x^{3}}$?
A. $\frac{7}{2}$
B. $\frac{10}{2}$
C. $\frac{\log 7}{\log 2}$
D. $\frac{\log 10}{\log 2}$
E. $\frac{\log 7 x}{\log 2 x}$

$$
\begin{aligned}
\frac{\log x^{2}+\log x^{5}}{\log x^{5}-\log x^{3}} & =\frac{\log \left(x^{2}-x^{5}\right)}{\log \left(\frac{x^{5}}{x^{3}}\right)} \\
& =\frac{\log \left(x^{7}\right)}{\log \left(x^{2}\right)} \\
& =\frac{7 \log x}{2 \log x}=\frac{7}{2}
\end{aligned}
$$

19. Which of the following is equal to $\log x$ if $x=\frac{a b}{\sqrt[4]{c}}$?
A. $\log a+\log b-\log 4 c$
B. $\log a+\log b-4 \log c$
(C) $\log a+\log b-\frac{1}{4} \log c$
D. $\frac{\log a+\frac{1}{4} \log b}{\log c}$
E. $\frac{\log a+4 \log b}{\log c}$

$$
\begin{aligned}
x & =\frac{a b}{\sqrt[4]{c}} \\
\log x & =\log \left(\frac{a b}{\sqrt[4]{c}}\right) \\
& =\log a b-\log \sqrt[4]{c}
\end{aligned}
$$

20. Find the exact value of t given that $7^{2 t}=3^{5}$.
A. $5 \log 3-2 \log 7$
B. $\frac{3^{5}}{49}$
(C.) $\frac{5 \log 3}{2 \log 7}$
D. $3^{5}-49$
E. $3 \log 5-7 \log 2$

$$
\begin{aligned}
7^{2 t} & =3^{5} \\
\log 7^{2 t} & =\log 3^{5} \\
\frac{2 t \log 7}{2 \log 7} & =\frac{5 \log 3}{2 \log 7} \\
t & =\frac{5 \log 3}{2 \log 7}
\end{aligned}
$$

21. A bacteria population doubles every 9 days. Determine an expression for the number of bacteria N after t days, given an initial amount of 500 bacteria.
A. $N=500(9)^{1 / 9}$
(B)
$N=500(2)^{1 / 9}$
C. $-\mathrm{N}=500(9)^{1 / 2}$
D. $N=500(2)^{9 t}$
E. $N-500(9)^{2 t}$
22. Determine the initial investment needed, P, if an interest rate of 12% per year compounded quarterly yields $\$ 1000$ in 5 years.
A. $\quad P=\frac{1000}{1.03^{5}}$
B. $\quad P=\frac{1000}{1.04^{5}}$
(C.) $P=\frac{1000}{1.03^{20}}$
D. $\quad P=\frac{1000}{1.04^{20}}$

$$
1000=P\left(1+\frac{0.12}{4}\right)^{20}
$$

$$
\begin{aligned}
& \frac{1000}{(1+0.03)^{20}}=P \\
& \qquad P=\frac{100}{(1.03)^{30}}
\end{aligned}
$$

23. The half-life of a radioactive substance is 14 years. Determine an expression for the mass of the substance remaining from 50 grams, after t years have gone by
A. $\quad 0.5(50)^{14 / 1}$
B. $\quad 50\left(\frac{1}{2}\right)^{14 / t}$
$A=50\left(\frac{1}{2}\right)^{t / 14}$
C. $0.5(50)^{t / 14}$
(D.) $50\left(\frac{1}{2}\right)^{1 / 14}$
24. A strain of bacteria triples every 5 days. Determine an expression for the initial number of bacteria if after t days, 200 bacteria are present.
(A.) $A=\frac{200}{3^{/ / 5}}$
B. $\quad A=\frac{200}{3^{5 / t}}$
$200=A(3)^{t / s}$
C. $\quad A=200(3)^{1 / 5}$
D. $A=200(3)^{5 / t}$

$$
\frac{200}{(3)^{1 / 5}}=A
$$

Written Questions

1. Solve algebraically:

$$
\begin{aligned}
& \log _{15}(3-x)+\log _{15}(1-x)=1 \\
& \log _{15}[(3-x)(1-x)=1 \\
& \log _{15}\left(3-3 x-x+x^{2}\right)=1 \\
& \log _{15}\left(3-4 x+x^{2}\right)=1 \\
& 15^{\prime}=x^{2}-4 x+3 \\
& 0=x^{2}-4 x+3-15 \\
& 0=x^{2}-4 x-12 \\
& 0=(x+2)(x-6) \\
& > \\
& x+2=0 \\
& x=-2 \\
& x-6=0 \\
& x>6
\end{aligned}
$$

2. A food sample contains 300 bacteria. The doubling time for bacteria left at room temperature is 20 minutes. How many minutes will it take to reach an unsafe level of 100000 bacteria?
Solve algebraically using logarithms. Give answer as a decimal accurate to 2 decimal places.

3. Given the function $y=\log _{3}(x+2)-2$.
a) Graph the function. Clearly show at least 4 points on the curve and state the equation of the asymptote.
b) Calculate the x-intercept of this function.
a) $y=\log _{3}(x+2)-2$ is a transformation of $y=\log _{3} x$, and this is the inverse of $y=3^{x}$

2 left
2 down

$$
(x, y) \rightarrow(x-2, y-2)
$$

$y=\log _{3} x$	
$1 / 9$	-2
$1 / 3$	-1
1	0
3	1
9	2

Vertical asymptote at $x=-2$
b) x-intercept is $(7,0)$, which is on our table.

We can find it using the equation, too:

$$
y=\log _{3}(x+2)-2
$$

Let $y=0$

$$
0=\log _{3}(x+2)-2
$$

$$
2=\log _{3}(x+2)
$$

change form: $3^{2}=x+2$

$$
\begin{aligned}
q & =x+2 \\
-2 & =x \\
1 & =x
\end{aligned}
$$

$$
(7,0)
$$

