C_22 PODs and Horizontal Asymptotes
ruesday, November 26, 2019 3:56 PM

C_22 PODs and Horizontal Asymptotes

(Answers to the right)

Point of Discontinuity (POD)

-is a "hole" in the graph that happens whenever a factor of the denominator cancels with a factor in the numerator. The NPV that comes from that factor is the x -value of the POD.

For each rational equation, decide whether it has a POD when graphed.
a) $y=\frac{x^{2}+7 x+10}{x+10}$
b) $y=\frac{x^{2}+7 x+10}{x^{2}+12 x+20}$
c) $y=\frac{x^{2}-3 x-10}{x^{2}-25}$
d) $y=\frac{x^{2}-9}{2 x+6}$
Find the (x, y) coordinates of this equation's POD: $\quad y=\frac{x^{2}-4 x-5}{x^{2}+x-30}$

Horizontal Asymptote

-is a horizontal line that a function's graph approaches as x -values get extremely large

For each rational function below, can you figure out the equation of its horizontal asymptote?
1a) $y=\frac{3}{x}$
b) $y=\frac{2}{x-4}+7$

2a) $y=\frac{5}{x^{2}}$
b) $y=\frac{-3}{(x+2)^{2}}-6$

Point of Discontinuity (POD)
-is a "hole" in the graph that happens whenever a factor of the denominator cancels with factor in the numerator. The NPV that comes from that factor is the x-value of the POD.

For each rational equation, decide whether it has a POD when graphed

2a) $y=\frac{5}{x^{2}}$
$y=0$
b) $y=\frac{-3}{(x+2)^{2}}-6$
$y=-6$
3. $y=\frac{(x-7)}{x^{2}-9}$
4. $y=\frac{(8 x-1)}{5 x^{2}-9}$

5. $y=\frac{\left(2 x^{2}-5 x+3\right)}{x^{2}-4}$

6. $y=\frac{\left(4 x^{2}-7\right)}{x^{2}+1}$

7. Can you tell what the horizontal asymptote equation will be for each function below, without having
to graph it?
a) $y=\frac{\left(3 x^{2}+8 x-2\right)}{\left(5 x^{2}-4 x+7\right)}$
b) $y=\frac{6 x+8}{5 x^{2}-9}$

7. Can you tell what the horizontal asymptote equation will be for each function below, without having to graph it?
a) $y=\frac{\left(3 x^{2}+8 x-2\right)}{\left(5 x^{2}-4 x+7\right)}$
b) $y=\frac{6 x+8}{5 x^{2}-9}$
$y=\frac{2}{5}$
$y=0$

