

C_22 Geometric Sequences and Series

Scroll down for solutions

Hand-In Assignment - Geometric Sequences & Series

Name:

Formulas:

$$t_n = ar^{n-1}$$

$$S_n = \frac{a(1-r')}{1-r}$$

$$S_n = \frac{a - h}{1 - r}$$

$$S = \frac{a}{1-a}$$

Where appropriate, show the process - not just the final answer!

- 1. Show the using of a formula to find t_7 for the geometric sequence that begins: 0.01, 0.08, 0.64, 5.12 . . .
- 2. Show the using of a formula to find the <u>sum</u> of the first 8 terms, S_8 , given the sequence that begins: $50+37.5+28.125+21.09375+\ldots$
- 3. Show the using of a formula to find the first term of a geometric series, given that $S_6 = 1092$ and r = -3.
- 4. Use an algebraic method to find t_{10} for the geometric sequence with $t_3 = 10$, $t_6 = 80$

5. Consider the geometric series: $3/4 + 9/4 + \ldots + 729/4$.		
a) Determine the sum of this series.		
b) Determine the number of terms in the series.		
c) Express the series in sigma notation.		
6. Write each series below using sigma notation. Do not find the sum.		
a) 1/3 + 1/6 + 1/12 + 1/24 + 1/48		
b) 3-6+12-24+48-96		

- 7.. Determine the sum of the series. $\sum_{k=0}^{14} -3(-2)^k$
- 8. Determine $t_{\rm s}$, given that an infinite geometric series has S=18 and $r=\frac{2}{3}$
- 9. Where possible, find the sum of the following infinite series. If it is not possible, state "No finite sum." $\,$
- a) $81 + 27 + 9 + 3 + \dots$
- b) 20-30+45-67.5+...
- 10. Determine the infinite sum: $S = 0.3 + \frac{2}{100} + \frac{2}{10000} + \frac{2}{10000} + \dots$

Give answer as a fraction.

(Hint - think carefully about what you use as the first term in the formula!)

- 11. A ball is dropped from a height of 4.0 meters to a floor. After each bounce, the ball rises to 60% of its previous height.
- a) Determine the total vertical distance traveled when the ball hits the ground the 8^{th} time. (Correct to 2 decimal places.)
- b) Determine the total vertical distance that the ball travels before coming to rest. (Correct to 2 decimal places.)
- 12. A geometric sequence consists of these terms: 2x + 5, 3x, m. The common ratio is r = 4. What is the value of m?
 A. -4
 B. -12 C. -16 D. -48 A. -4
- 13. Determine the first term in the expansion of $\sum_{k=2}^{6} 4(5)^k$.
 - A. 4
- B. 20
- C. 100
- D. 500
- 14. The number of terms in the series defined by $\sum_{n=8}^{w} (2n-10)$ is
 - A. w
- B. w 7 C. w 8
- D. w 9

Hand-In Assignment - Geometric Sequences & Series

Formulas:

$$t_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S = \frac{a}{1 - r}$$

Where appropriate, show the process - not just the final answer!

1. Show the using of a formula to find t_1 for the geometric sequence that begins: 0.01, 0.08, 0.64, 5.12 . . .

$$t_n = ar^{n-1}$$
 $t_1 = 0.01(r)$
 $t_2 = 0.01(8)$
 $r = 8$

2. Show the using of a formula to find the <u>sum</u> of the first 8 terms, S_8 , given the 50 + 37.5 + 28.125 + 21.09375 + . . . sequence that begins:

$$S_{n} = \frac{a(1-r^{n})}{1-r}$$

$$S_{g} = \frac{50(1-0.75)}{1-n.75}$$

$$\begin{cases} r = \frac{.37.5}{.50} \\ r = 0.7.5 \end{cases}$$

3. Show the using of a formula to find the first term of a geometric series, given that

$$S_{0} = 1092$$
 and $r = -3$.
 $S_{0} = \frac{a(1-r^{2})}{1-r^{2}}$
 $1092 = \frac{a(1-(-3)^{2})}{1-r^{2}}$

$$|072 = \frac{\alpha(1 - 121)}{4}$$

$$|092 = \frac{\alpha(-728)}{4}$$

$$\frac{1092}{-182} = \frac{a(-182)}{-182}$$

$$a = \frac{1092}{-182}$$

$$a = -6$$

4. Use an algebraic method to find t_{10} for the geometric sequence with $t_3 = 10$, $t_6 = 80$

$$t_{3} = ar^{2} = 10$$
 $t_{6} = ar^{5} = 80$

Because
$$ar^2 = 10$$
 $t_3 = ar^5 = 80$

Because $ar^2 = 10$, we can divide $ar^5 = 80$

on one side by ar^2 , and the $ar^2 = 10$

other side by 10
 $r^3 = 8$
 $r = 2$

the value of a :

$$a(2^2) = 10$$
 $a = \frac{10}{4} = \frac{5}{2}$

$$t_{10} = ar^{9}$$
 $= (\frac{5}{2})(2)$

5. Consider the geometric series:
$$3/4 + 9/4 + \ldots + 729/4$$
.

a) Determine the sum of this series.
$$S_n = \underbrace{a - l_r}_{l = r}$$

$$n = \frac{a - lr}{1 - r}$$

$$= \frac{3}{4} - (\frac{729}{4})(3)$$

$$= \frac{3}{1 - 3}$$

$$r = 3$$

$$=\frac{3}{4}-\frac{2187}{4}$$

$$= -\frac{2184}{4} \cdot \frac{1}{-2}$$

b) Determine the number of terms in the series.

$$(r = 2)$$

$$q = 2.5$$

$$t_{10} = ar$$
 $t_{10} = (2.5)(2)$
 $t_{10} = (2.5)(2)$

c) Express the series in sigma notation.

for sigma notation, we put ar" into the sigma, as the expression. $ar^{n-1} = \frac{3}{4}(3)^{n-1}$

he know we have 6 terms, so

we get:
$$\sum_{n=1}^{3} \frac{3}{4} (3)^{n-1}$$

n=6 \

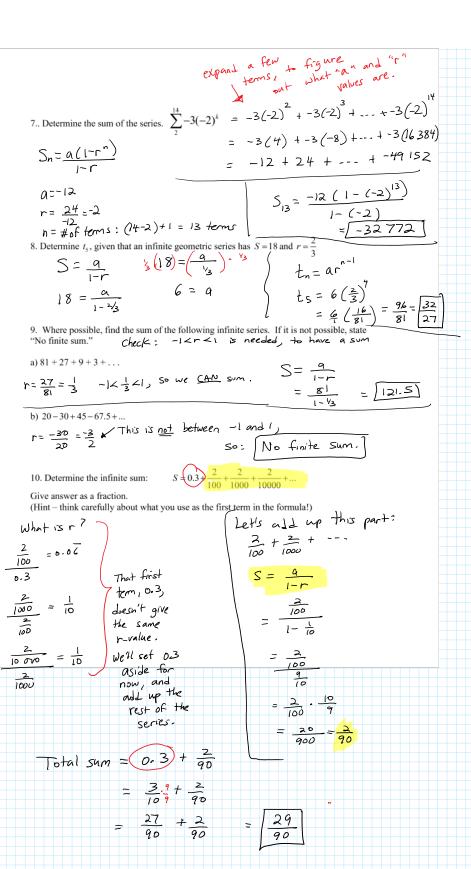
6. Write each series below using sigma notation. Do not find the sum. a) 1/3+1/6+1/12+1/24+1/48

a)
$$1/3 + 1/6 + 1/12 + 1/24 + 1/48$$

$$r = \frac{1}{6}$$

$$r = \frac{1}{6}$$

$$= \frac{1}{6} \cdot \frac{2}{6}$$


$$= \frac{1}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{$$

b)
$$3-6+12-24+48-96$$

$$r = \frac{-4}{3}$$
= -2

$$ar^{n-1} = 3(-2)^{n-1}$$
6 terms

$$\sum_{n=1}^{6} 3(-2)^{n-1}$$

4(0.4) = 2.4 24(0.4) = 1.44 24(0.4) = 1.44 2 3 4 5 6 7 3

- 11. A ball is dropped from a height of 4.0 meters to a floor. After each bounce, the ball rises to 60% of its previous height.
- a) Determine the total vertical distance traveled when the ball hits the ground the 8th time. (Correct to 2 decimal places.)

Vortical distance = (airtical days) + (up distance) + (deans)

"up distance" =
$$\frac{2.4 + 1.44 + \dots}{7 + \text{cris}}$$

"dural distance" = $\frac{2.4 + 1.44 + \dots}{7 + \text{cris}}$

a = $\frac{2.4}{1 - 0.6}$

Sy = $\frac{2.4 (1 - 0.6)}{1 - 0.6}$ = 5.8320384

The last = $\frac{1}{1 + 0.6}$ + 2(5.8320384) = [8.66 m]

b) Determine the total vertical distance that the ball travels before coming to rest. (Correct to 2 decimal places.)

"come to a rest" mems we do the sum of the infinite series:
$$2.4 + 1.44 + \dots$$
infinitely many terms,
$$a = 2.4$$

$$r = 0.6 < 1, \text{ So we CAN}$$

$$\text{Sind the sum.}$$

$$S = \frac{2.4}{1-0.6} = 6$$
Total = $\frac{(\text{solital})}{4 \text{ top}} + \frac{(\text{op's})}{4 \text{ top}} + \frac{(\text{down's})}{4 \text{ top}}$

$$= \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{6} =$$

12. A geometric sequence consists of these terms: 2x + 5, 3x, m. The common ratio

What is the value of
$$m$$
?

A. 4

B. -12

C. -16

D. -48

Third term is n then: n then

A. 4 B. 20 C. 100 D. 500

Substitute
$$k=2$$
 into the expression: $4(5)^2 = 4(25)$

$$= 100$$

14. The number of terms in the series defined by $\sum_{n=8}^{w} (2n-10)$ is

A. w (B) w-7 C. w-8 D. w-9

humber of terms =
$$(top number) - (bottom number) + 1$$

= $W - 8 + 1$