Ch. 5.1-5.2 Practice Examples:

Stretch Transformations $y=a \sin b x$ and $y=a \cos b x$
STEPS:

1. Determine the amplitude and period.
2. Adjust the scale on the x-axis according to the period (make the number of squares for one period divisible by 4 - for example: $8,12,16$)
3. Adjust the scale on the y-axis according to the amplitude (with midline on the x-axis)
4. Graph AT LEAST TWO CYCLES of the function.
1) $y=2 \sin x$

$$
a m p=2 \quad \text { period }=2 \pi \Gamma_{12} \text { squares }
$$

2) $y=-\sin 2 x \quad$ amp $=1 \quad$ period $=\frac{2 \pi}{2}=\pi$

> 12 squares
> $(\div 4=35 q)$

$$
\text { amp }=2 \quad \text { period }=\frac{2 \pi}{\frac{1}{2}}=2 \pi \times \frac{2}{1}=4 \pi
$$

3) $y=2 \cos \frac{1}{2} x$

4) $y=-3 \cos 2 x$
$\operatorname{anp}=3$

$$
\text { perrod }=\frac{2 \pi}{2}=\pi
$$

Determine the equation of the following functions:
1.

Unit 2 Page 3
2.

$$
b=\frac{2 \pi}{p}=\frac{2 \pi}{4 \pi} \cdot \frac{1}{2}
$$

$$
y=-5 \cos \frac{1}{2} x
$$

Combining ALL Transformations $y=a \sin b(x-c)+d$ and $y=a \cos b(x-c)+d$ STEPS:

1. Determine the amplitude, vertical displacement, period and phase shift.
2. Adjust the scale on the x-axis according to the period (make the number of squares for one period divisible by 4 - for example: $8,12,16$)
3. Adjust the scale on the y-axis according to the centre line and amplitude
4. Determine the starting point for sine or cosine at the phase shift.
5. Graph AT LEAST TWO CYCLES of the function.

2) $y=-3 \sin 2\left(x+\frac{\pi}{4}\right)-2$

$$
\begin{aligned}
& a m p=3 \\
& V D=-2
\end{aligned}
$$

$$
\text { period }=\frac{2 \pi}{2}=\pi(12 q)
$$

$$
\text { ps }=-\frac{\pi}{4}(\text { left })
$$

3) $y=3 \cos \frac{1}{2}\left(x-\frac{5 \pi}{6}\right)+2$ $\left.\right|_{\operatorname{amp}}=3$

$$
V D=2
$$

$$
\begin{aligned}
& \text { period }=\frac{2 \pi}{2}=2 \pi \times \frac{2}{1}=4 \pi \\
& \text { PS }=\frac{5 \pi}{6}
\end{aligned}
$$

Unit 2 Page 5

$\operatorname{amp}=4$

$$
\text { period }=\frac{2 \pi}{3} \leftarrow 8 \text { sq }
$$

$V D=1 \quad p s=\frac{\pi}{6}$

$$
V D=1
$$

$$
\text { Vi): } y=1-
$$

5) $y=2 \cos \left(3 \theta-\frac{\pi}{2}\right)-2$

W $y=$

$$
y=2 \cos \left(3\left(\theta-\frac{\pi}{6}\right)\right)-2
$$

$$
\begin{aligned}
& \text { amp } \\
& \text { amp }=2 \quad \text { person }=\frac{2 \pi}{3} \pi_{8 s q} \\
& V D=-2 \quad \rho S=\frac{\pi}{6}
\end{aligned}
$$

7. Given the graphs below, determine a possible equation for each function.
a)
b)

$o r$
c) $-\cos P s=0$

$$
\begin{aligned}
& y=-3 \sin x+2 \\
& \text { or } y=-3 \cos \left(x+\frac{\pi}{2}\right)+2
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6) } y=-\frac{1}{2} \sin \left(\frac{1}{2} \theta+\frac{\pi}{4}\right)+1 \\
& \operatorname{amp}=\frac{1}{2} \\
& \text { period }=\frac{2 \pi}{\frac{1}{2}}=2 \pi \times \frac{2}{7}=4 \pi \\
& V D=1 \\
& P S=-\frac{\pi}{2} \\
& \text { VD: } y=1 \\
& M A X-M D D-M 1 N)
\end{aligned}
$$

