Sine Law Worked Questions

Scroll down for solutions - the resolution on them may not be great, but this is what I've got.

Exercises

1. Use the Law of Sine to solve $\triangle A B C$ in each case. Round the answers to one decimal place.
a) $\angle A=37^{\circ}, a=13, b=16$
b) $\angle A=54^{\circ}, a=13, b=10$
c) $\angle B=120^{\circ}, a=15, b=31$
d) $\angle B=112^{\circ}, a=25, b=28$
e) $\angle C=27^{\circ}, a=17, c=13$
f) $\angle \mathrm{A}=72^{\circ}, \angle \mathrm{B}=50^{\circ}, \mathrm{b}=35$
g) $\angle \mathrm{B}=105^{\circ}, \angle \mathrm{C}=40^{\circ}, \mathrm{b}=13$
h) $\angle A=22^{\circ}, \angle B=69^{\circ}, a=3.7$
i) $\angle \mathrm{A}=81^{\circ}, \angle \mathrm{C}=40^{\circ}, a=10$
j) $\angle B=43^{\circ}, \angle C=100^{\circ}, \mathrm{c}=24$
2. The roof lines of a building make angles of 28° and 75° with the horizontal. The shorter roof line is 4.1 m long. Find the length of the other roof line rounded to one decimal place.
3. Bob observes the angle of elevation of an airplane to be 52° and the angle of elevation for Amy is 36°. Bob and Amy are 325 m apart on level ground and on the same vertical plane as the airplane.
a) How far to the nearest meter is each person from the airplane?
b) How high to the nearest meter is the airplane?
4. Two guy wires 15 m and 9 m in length are fastened to the top of a radio tower from two points A and B directly opposite one another on level ground. The angle of elevation of the longer wire is 29.3°.
a) How far apart are A and B ? Round your answer to the nearest meter.
b) How tall is the tower? Round your answer to the nearest meter.
5. A bridge $M N$ is to be built across a river. Point P is located 64 m from N on the same side of the river and $\angle N=69^{\circ}$ while $\angle P=42^{\circ}$. How long will the bridge be? Round your answer to the nearest meter.
w Law of Sines worked questions

SINE LAW practice

$$
\begin{aligned}
& \text { (a) } b=16 C_{B}^{C} a=13 \\
& \frac{\sin 37^{\circ}}{13}=\frac{\sin B}{16} \\
& 16 \frac{\sin 37^{\circ}}{13}=\sin B \\
& \sin ^{-1}\left(\frac{16 \sin 37^{\circ}}{13}\right)=B \\
& B=47.8^{\circ} \\
& B=180^{\circ}-428^{\circ} \\
& \Rightarrow C=95.2^{\circ} \\
& B=132.2^{\circ} \\
& \frac{13}{\sin 37^{\circ}}=\frac{C}{\sin 95.2^{\circ}} \\
& \sin 95.2^{\circ}\left(\frac{13}{\sin 37^{\circ}}\right)=C \\
& c \doteq 21.5 \\
& \Rightarrow C \doteq 10.8^{\circ} \\
& \frac{13}{\sin 37^{\circ}}=\frac{C}{\sin 10.8} \\
& \text { b) } \angle A=54^{\circ}, a=13, b=10 \\
& \sin ^{-1}\left(\frac{10 \sin 54^{\circ}}{13}\right)=B \\
& B=38.48580779^{\circ} \\
& B=385^{\circ} \\
& C=87.51419221^{\circ} \\
& \text { on } \\
& C \div 87.5^{\circ} \\
& \frac{c}{\sin 87.5^{\circ}}=\frac{13}{\sin 54^{\circ}} \\
& c=16.1
\end{aligned}
$$

c) $\angle B=120^{\circ}, a=15, b=31$

$\frac{\sin 120^{\circ}}{31}=\frac{\sin A}{15}$
$A=\sin ^{-1}\left(\frac{15 \sin 120^{\circ}}{31}\right)$
$A=2477428064$
$A=24.8^{\circ}$
$C=35.22571936^{\circ}$
$C \doteq 35.2^{\circ}$
OR $A=155.2^{\circ}$
tog mix.

$$
\begin{gathered}
\frac{c}{\sin 352^{\circ}}=\frac{31}{\sin 120^{\circ}} \\
c=20.6
\end{gathered}
$$

$$
\text { d) } \angle B=112^{\circ}, a=25, b=28
$$

$$
\frac{\sin 112^{\circ}}{28}=\frac{\sin A}{25}
$$

$$
A=\sin ^{-1}\left(\frac{25 \sin 112^{\circ}}{28}\right)
$$

$$
A=55.87776749^{\circ}
$$

$$
A=55.9^{\circ}
$$

$$
C=12.12223251^{\circ}
$$

$$
\begin{aligned}
& C=12.12205 \\
& C \pm 12.1^{\circ}
\end{aligned}
$$

$$
\frac{28}{\sin 112^{\circ}}=\frac{c}{\sin 121^{\circ}}
$$

$$
c=6.3
$$

e) $\angle \mathrm{C}=27^{\circ}, \mathrm{a}=17, \mathrm{c}=13$

$$
\begin{aligned}
& \frac{\sin A}{17}=\frac{\sin 27^{\circ}}{13} \\
& A=\sin ^{-1} / \frac{175}{1} \\
& A=36.41858 \\
& A=36.4^{\circ} \\
& B \vdots 116.6^{\circ} \\
& \frac{b}{\sin 116.6^{\circ}}=\frac{13}{\sin 27^{\circ}} \\
& b=25.6
\end{aligned}
$$

$$
A=\sin ^{-1}\left(\frac{17 \sin 27^{\circ}}{13}\right)
$$

$$
A=36.41858115^{\circ}
$$

$$
\begin{aligned}
& A=143.6^{\circ} \\
& B=9.4^{\circ} \\
& \frac{b}{\sin 94^{\circ}}=\frac{13}{\sin 27^{\circ}} \\
& b=4.7
\end{aligned}
$$

f) $\angle \mathrm{A}=72^{\circ}, \angle \mathrm{B}=50^{\circ}, \mathrm{b}=35$

$$
\begin{aligned}
& \frac{35}{\sin 50^{\circ}}=\frac{a}{\sin 72^{\circ}} \quad a=43.5 \\
& \frac{35}{\sin 50^{\circ}}=\frac{c}{\sin 58^{\circ}} \quad c=38.7
\end{aligned}
$$

g) $\angle \mathrm{B}=105^{\circ}, \angle \mathrm{C}=40^{\circ}, \mathrm{b}=13$

C

$$
\frac{13}{\sin 105^{\circ}}=\frac{a}{\sin 35^{\circ}}, a=7.7
$$

$$
\frac{13}{\sin 105^{\circ}}=\frac{c}{\sin 40^{\circ}} \quad c=8.7
$$

h) $\angle A=22^{\circ}, \angle B=69^{\circ}, a=3.7$

$$
\frac{b}{\sin 69^{\circ}}=\frac{3.7}{\sin 22^{\circ}}, b=9.2
$$

$$
\frac{c}{\sin 89^{\circ}}=\frac{3.7}{\sin 22^{\circ}}, c=9.9
$$

Unit 3 - Trig and Rationals Page 6
i) $\angle \mathrm{A}=81^{\circ}, \angle \mathrm{C}=40^{\circ}, a=10$

j) $\angle B=43^{\circ}, \angle C=100^{\circ}, c=24$
B

$$
\begin{aligned}
& \frac{24}{\sin 100^{\circ}}=\frac{b}{\sin 43^{\circ}}, a=16.6 \\
& \frac{24}{\sin 100^{\circ}}=\frac{a}{\sin 37^{\circ}}, a=14.7
\end{aligned}
$$

2. The roof lines of a building make angles of 28° and 75° with the horizontal. The shorter roof line is 4.1 m long. Find the length of the other roof line rounded to one decimal place.

$$
\begin{aligned}
\frac{c}{\sin 75^{\circ}} & =\frac{4.1}{\sin 28^{\circ}} \\
c & =\sin 75^{\circ}\left(\frac{4.1}{\sin 28^{\circ}}\right) \\
c & =8.4 \mathrm{~m}
\end{aligned}
$$

3. Bob observes the angle of elevation of an airplane to be 52° and the angle of elevation for Amy is 36°. Bob and Amy are 325 m apart on level ground and on the same vertical plane as the airplane
a) How far to the nearest meter is each person from the airplane?
b) How high to the nearest meter is the airplane?

4. Two guy wires 15 m and 9 m in length are fastened to the top of a radio tower from two points A and B directly opposite one another on level ground. The angle of elevation of the longer wire is 29.3°.
a) How far apart are A and B? Round your answer to the nearest meter.
b) How tall is the tower? Round your answer to the nearest meter.
a)

$$
\begin{aligned}
\frac{\sin B}{15} & =\frac{\sin 29.3^{\circ}}{9} \\
B & =\sin ^{-1}\left(\frac{15 \sin 293^{\circ}}{9}\right) \\
B & =54.650^{\circ}
\end{aligned}
$$

$$
\cos 29.3^{\circ}=\frac{x}{15}, \quad x=13.08103909
$$

$$
\cos 54.65 \cdots=\frac{y}{9}, y=5.207070537
$$

$$
\text { Distance }=x+y \doteq 18 \mathrm{~m}
$$

b) $\quad \sin 29.3^{\circ}=\frac{h}{15}, \quad h=7.3407 \ldots$

$$
\text { height }=7 \mathrm{~m}
$$

5. A bridge $M N$ is to be built across a river. Point P is located 64 m from N on the same side of the river and $\angle \mathrm{N}=69^{\circ}$ while $\angle \mathrm{P}=42^{\circ}$. How long will the bridge be? Round your answer to the nearest meter.

