WELCOME TO PRE-CALCULUS 12 Spring 2023

- Monday-Thursday, 6:30-9:30 p.m.
- May 3 - June 21
- Meets in Portable 26
- Instructors: Anurita Dhiman and Susana Egolf

I would like to respectfully acknowledge that this district of teaching and learning in Langley, B.C. resides on the traditional, unceded and ancestral territories of the Matsqui, Kwantlen, Katzie, and Semiahmoo First Nations.

TERRITORY ACKNOWLEDGEMENT

$\leadsto \operatorname{Lan}_{\text {schools }} \boldsymbol{q}^{2} \mathrm{E}$
\wedge As we work together for student success through LEARNING, ENGAGEMENT, and CONNECTION to inspire all learners (including ourselves) to reach their full potential and create a positive legacy for the future, we do so on the traditional, unceded territory of the Matsqui, Kwantlen, Katzie, and Semiamhoo first nations

Plan For Todays

1. Intro to course: Course Outline \& Calendar

2. Review Basic Graphing of Functions and Domain \& Range
3. Start working on Chapter 1
\checkmark 1.1 Horizontal and Vertical Translations
$g(x)=4 x^{2} \quad h(x)=\frac{1}{4} x^{2}$
\checkmark 1.2 Reflections and Stretches - INTRO
4. Work on practice questions from Textbook

Page 12:
\#2, 3cd, 4ac, 5, 8, 11
Page 28:
\#3b, 4b, 5-7, 9, 12

Plan Going Forwards

Plan Going Forwards

1. Finish going through practice question from 1.1-1.2 in textbook.
2. You will continue practicing 1.2 and will go through 1.3 on Thursday. Have a look through these sections to prepare for tomorrow.

Please let me know if you have any questions or concerns about your progress in this course. The notes from today will be posted at egolfmath.weebly.com after class.
Let us know if you have any questions or will be away.
Anurita Dhiman = adhiman@sd35.bc.ca
Susana Egolf = segolf@sd35.bc.ca

Do you need a textbook, or need to see the office for something else?

Wednesday, May 9:30-6:30 pm
Thursday, May 4 9:30-6:30 pm
${ }^{* *}$ Office hours REVISED beginning week of MAY 8th 2023:

Mon/Tue/Wed/Th 9:30am-4:30pm
Fri 9:30am-2:30pm (closed 12:00-1:00pm)

Course Outline

PREC 12 Outline May 2023

Pre-Calculus 12

Teachers: Anurita Dhiman adhiman@sd35.bc.ca Susana Egolf segolf@sd35.bc.ca

Website: https://egolfmath.weebly.com/

	MAY							JUNE						
	Su	M	Tu	W	Th	F	S	Su	M	Tu	W	Th	F	Sa
Meets in		1	2	$\binom{\text { (emest }}{\text { ciass }}$	4	5	6					1	2	3
Portable 26	7	8	9	10	11	12	13	4	5	6	7	8	9	10
Mon-Tues-Wed-Thurs	14	15	16	17	18	19	20	11	12	13	14	15	16	17
6:30-9:30 PM	21	$\begin{aligned} & \text { nos } \\ & \text { cless } \end{aligned}$	23	24	25	26	27	18	19	20	$\left(\begin{array}{c}\text { cest } \\ \text { class }\end{array}\right.$	22	23	24
139 alaceas	28	29	30	31				35	26	27	28	29	30	

7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	nos					
chas	23	24	25	26	27	
28	29	30	31			

4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	cetas)	22	23	24
25	26	27	28	29	30	

PC12 Topics

Chapter	Content
1	Function Transformations
3	Polynomial Functions
4	Trigonometry and the Unit Circle, Equations
5	Trigonometric Functions and Graphs
6	Trigonometric Identities
$\mathbf{7}$	Exponential Functions and Equations
$\mathbf{8}$	Logarithmic Functions and Equations
$\mathbf{9}$	Rational Functions and Equations
\mathbf{G}	Geometric Sequences and Series

Curricular Competencies
 Reason and model Understand and solve Communicate and represent Connect and reflect

Evaluation

CATEGORY	PERCENT OF COURSE
Chapter Assignments	$\mathbf{9 \%}$
Weekly Tests	$\mathbf{9 1 \%}$
TOTAL	$\mathbf{1 0 0 \%}$

Important Information

Tests There will be 7 tests, each covering all the material completed in class in the previous week. Tests will be closed book and supervised in class. There is no final exam for this course.

Test Dates:

Tuesday, May 9	Monday, June 5
Monday, May 15	Monday, June 12
Tuesday, May 23	Tuesday, June 20
Monday, May 29	Wednesday, June 21 - Retest Day

On the last day of class, June 21, there will be the opportunity to do a rewrite test on any TWO tests. If you rewrite a test, only the higher mark of the two attempts will be recorded towards your final grade.

Assignments There will be an assignment for each chapter, marked based on completion. Doing math questions helps you develop confidence with the math we are learning. Partial solutions to these assignments will be posted on the class website, http://egolfmath.weebly.com/

In-class Notes You will receive notes packages which we use in class. You will also be able to access filled-in notes on the class website.

Expectations

- If in good health, attend every class, arriving on time.
- If you are sick, use the posted in-class notes and stay caught up with the course schedule.
- No smoking is permitted on school property.
- Show consideration and courtesy.
- Be attentive and focused when class is in session.
- Use in-class time productively; participate in group activities.
- Ask for help with questions you find difficult. If you are struggling, watch the video for that section. Video links are provided on the class website for every section in the textbook.
- Set aside extra time to prepare for tests.
-

Wireless access:

SD35 - Visitors, password is VisitorSD35
SD35-Secured-Students
Username: pupil number
Password: as shown at right
Class website:
http://egolfmath.weebly.com/

OFFICE 365 LOGIN CREDENTIALS

USERNAME:

First initial + lastname + last 4 digits of your student number @langleyschools.ca

PASSWORD:

Use your school network password.
If you have never changed your password, it defaults to:

TB, page 2

Unit 1

Transformations and Functions

Functions help you make sense of the world around you. Many ordinary measuring devices are based on mathematical functions:

- Car odometer: The odometer reading is a function of the number of rotations of the car's transmission drive shaft.
- Display on a barcode reader: When the screen displays the data about the object, the reader performs an inverse function by decoding the barcode image.
Many natural occurrences can be modelled by mathematical functions:
- Ripples created by a water droplet in a pond: You can model the area spanned by the ripples by a polynomial function.
- Explosion of a supernova: You can model the time the explosion takes to affect a volume of space by a radical function.

TB, page 4

\qquad

Chapter 1: Function Transformations

1.0 Review

A relation is a set of ordered pairs (x, y).
For example: $\{(-1,6)(2,8)(5,10)(8,12)\}$
A function is a special type of relation.

- A function is like a machine. For each x-value, the function follows a rule to create exactly ONE y-value that goes with that x-value.
- Vertical Line Test: Function graphs contain NO points that are directly above one another.
For example, a function CANNOT contain both $(2,8)$ and $(2,5)$

Graphing

Ordered pairs are graphed on a coordinate system: (x, y)
\boldsymbol{x}-coordinates tell how far to move left or right from the origin, $(0,0)$ \boldsymbol{y}-coordinates tell how far to move up or down from the origin.

** On this page we use the vertical line test to decide whether or not the pictured graphs are functions.

Function Notation

$$
y=f(x)
$$

- means y is a function of x, so the y-value depends on the x-value we choose
- is read " y equals f of x "

To Try
$\frac{\text { To Try }}{\left.\text { 1) Given the function } f(x)=3-4 x \text {, find the value of } f(-4), ~()^{x-1}\right)}$ output

$$
\begin{aligned}
f(-4) & =3-4(-4) \\
& =3+16 \rightarrow f(-4)=19
\end{aligned}
$$

2) Given the function $g(x)=-2 x^{2}+5$, find the value of $g(2)$

$$
\begin{aligned}
g(2) & =-2(2)^{2}+5 \\
& =-2(4)+5 \\
& =-8+5 \\
g(2) & =-3
\end{aligned}
$$

Domain all the possible x-values of a function or relation $\{x \mid x, x \in \mathbb{R}\}_{\mathbb{R}}=$ real $\begin{gathered}\text { numbers }\end{gathered}$

Range all the possible y-values of a function or relation $\{y \mid y \ldots, y \in R\}$

Find the domain and range for each graph below, and write it using set notation.
a)

b)

Domain $\{x \mid x \in \mathbb{R}\}=$ all real numbers
Range $\{y \mid y \geqslant 1, y \in R\}=y$ is greater than

$$
\begin{aligned}
& \{x \mid-4 \leqslant x \leqslant 4, x \in R\} \\
& \{y \mid-3 \leqslant y \leqslant 3, y \in R\}
\end{aligned}
$$ all real numbers

We can find domain restrictions even without graphing, by looking at a function's equation.

Remember, we:

- Can't divide by zero
- Can't take square-roots of negatives

To Try

We can use technology to create the graph of a function.

- Use a graphing calculator to graph the following functions. Your graphs should match the graphs shown below.
- Determine the domain and range for each one.
a) $f(x)=\frac{1}{x-2}$
b) $f(x)=|x+1|$
c) $f(x)=\sqrt{16-4 x^{2}}$

Used [-9.4, 9.4] [-6.2, 6.2]

Transformations

We often sketch the graphs of functions. If we change a function's equation, the new equation produces a new, TRANSFORMED, graph.
Transformations include:
translations
reflections stretches

When a graph is transformed, each point on the graph is affected by the transformation.

Suppose that the x-coordinates for all the points on a graph are increased by three units. Here is a way to show how the points are changed.

mapping

- the relating of one set of points to another set of points so that each point in the original set corresponds to exactly one point in the image set

1.1 Horizontal and Vertical Translations

The graph of the base absolute value function is shown at right, and below are three transformed equations.

For each one:

- Sketch its graph on the grid.
- Describe, in words, the transformation that happened.
- Describe the transformation by giving its mapping.
- State the domain and range.

Points on an original graph correspond with points on a transformed graph, often called the image graph. We say that each original point is mapped to an image point.

Often equations are arranged with the " y " term isolated:

Want more explanation about functions, domain and range? Watch this: Algebra Basics: What Are Functions? - Math Antics

TRANSLATIONS - sliding graphs left/right/up/down

Some specific examples:

- when x is replaced with $x-8$, the graph will move 8 right.
- when x is replaced with $x+6$, the graph will move 6 left.
- when y is replaced with $y-4$, the graph will move 4 up.
- when y is replaced with $y+7$, the graph will move 7 down.

Base Function Equation	Transformed Equation	Mapping	Point on original graph	Its image point
$y=x^{2}$	$y-4=x^{2}$		$(-3,9)$	
$y=x+5$	$y=(x-3)+5$		$(2,7)$	
$y=\log _{5} x$	$y=\log _{5}(x-2)+3$		$(25,2)$	
$y=2^{x}$	$y=\frac{2}{(x-3}+8$		$\left(-1, \frac{1}{2}\right)$	
$y=\frac{2}{x-4}$	$y=6$		$\left(-4, \frac{1}{2}\right)$	
$x^{2}+y^{2}=16$	$(x-5)^{2}+(y+3)^{2}=16$			

To Try

Shown is the graph of $y=f(x)$.
a) Identify the transformations that result when the equation is changed to: $y-2=f(x+3)$
b) Make a table of key points on the original graph and the corresponding image points on the image graph.

c) Sketch the image graph.
d) State the domain and range of the image graph. (Assume that the line segments stop.)

Example

Given the mapping notation for a transformation, we can write the transformed equation.
a) Mapping notation
$(x, y) \rightarrow(x-8, y+3)$
Original function $y=f(x)$
New function
b) Mapping notation
$(x, y) \rightarrow(x+4, y-9)$
Original function $y=f(x)$
New function

What is a function? $y=f(x)$
 Vertical line test Domain and Range

Function Notation
Example:
$\begin{aligned} & f(2)=3(2)+1=7 \\ & f(-4)=3(-4)+1=11 \end{aligned}$

Function Notation

https://www.liveworksheets.com/ia2907456em

Function Notation

Solve the following functions given the following information

GLIVEWORKSHEETS
https://www./iveworksheets.com/worksheets/en/Math/Functions/Function or Relation tc28538741z

What is a Relation? What is a Function?

relation is a rule that associates an x-value with y-value(s)

A function is a speciar type of reation in which every independent value (x-value) has only one dependern value

$\{(4,3),(5,6),(6,9),(7,12),(8,15)\}$	$\{(4,3),(4,6),(5,9),(5,12),(6,15)\}$

_LIVEWORKSHEETS

WHAT ARE THE + TRANSFORMATIONS

 PARENT FUNCTION GRAPHS?

Domain and Range - Domain is the set of infutvalues of a function or relation. - Range is the set of outut values of a function or relation	$\begin{aligned} & \text { Ordered Pairs } \\ & \{(-6,2),(-1,-1),(1,4),(5,4),(7,-4)) \\ & \text { Domain }(-6,-1,1,5,7) \\ & \text { Range: }(-4,-1,2,4) \end{aligned}$
Mapping Diagram Domain ($-6,-1,1,5,7$) Range $\left\{\begin{array}{lll}-4,-1,2,4\end{array}\right\}$	Table Dornain $(-6,-1,1,5,7)$ Range $(-4,-1,2,4)$

Domain and Range

Domain is all the possible x values of a function.

Range is all the possible y values of a function.

1.1 Translations

$$
y=f(x) \rightarrow y=f(x-h)+k
$$

> horizontal translation
$h>0$: move to the right
$h<0$: move to the left
$h=0$: don't move
$f(x)=f(x-h)+k$

> vertical translation
> $\mathrm{k}>0:$ move upward
> $\mathrm{k}<0:$ move downward
> $\mathrm{k}=0:$ don't move

The following table shows the coordinates of the point on the different curves after translation:

The point on $f(x)$	The point on $f(x+k)$	The point on $f(x-k)$
(x, y)	$(x-k, y)$	$(x+k, y)$

Meanwhile, the shape of the function and domain of the function remains the same.

The following table shows the coordinates of the point on the different curves after translation:

The point on $\mathbf{f}(\mathbf{x})$	The point on $\mathbf{f}(\mathbf{x})+\mathbf{C}$	The point on $\mathbf{f}(\mathbf{x}) \mathbf{-} \mathbf{C}$
(x, y)	$(x, y+C)$	$(x, y-C)$

Meanwhile, the shape of the function and domain of the function remains the same.

Horizontal Translation

