Tonight's Class:

- Questions from 1.1-1.2?
- Preview 1.3-1.4
- Working through sections 1.3-1.4
- Converting between mixed and entire radicals
- Powers with positive and negative fractional exponents

- Work on practice questions from worktext

RECAP

Estimate the value of each radical to 1 decimal place. (Venfy)
a) $\sqrt{18}$
b) $\sqrt[3]{50}$

$$
\sqrt{18} \approx 4.24 \ldots . \quad \begin{aligned}
& (4.2)^{2}
\end{aligned}=17.649 子 \begin{aligned}
& 4.3)^{2}
\end{aligned}=18.49
$$

$$
\begin{aligned}
& \sqrt[3]{50}=3.68 \\
& \quad(3.7)^{3}=50.653
\end{aligned}
$$

Identify the sets to which each of the following numbers belongs by marking an " X " in the appropriate boxes.

Is $1 \div 17$ rational or irrational?

Is $1 \div 17$ rational or irrational?

irctoong
ir n π

$$
\sqrt{2}
$$

$$
\sqrt[3]{\frac{54 \div 2}{200 \div 2}}
$$

$\underset{\text { ration }}{\text { irstiond }} ?$

$$
=\sqrt[3]{\frac{27}{100}}
$$

1) reduce

$$
\begin{aligned}
& \begin{array}{l}
40 \\
-34 \\
\frac{60}{60} \\
\frac{51}{90} \\
\frac{85}{50} \\
\frac{34}{160} \\
\frac{153}{70}
\end{array}
\end{aligned}
$$

1) reduce
radicand
2) evaluate

$$
\begin{aligned}
& =\frac{\sqrt[3]{27}}{\sqrt[3]{100}} \frac{\text { not a a ped }}{\substack{\text { publ } \\
\text { cube }}} \\
& =\frac{3}{\sqrt[3]{100}} \underset{\text { not ration }}{\Rightarrow \text { ircationd }}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{68}{20} \\
& \frac{\begin{array}{l}
\frac{17}{30} \\
\frac{179}{130} \\
\frac{1102}{102}
\end{array}}{\frac{80}{120}} \\
& \frac{119}{100}
\end{aligned}
$$

Without determining the value of each radical, identify whether it
represents a rational number or an irrational number.
a) $\sqrt{0.5625}$
b) $\sqrt{45}$
a) $\sqrt{0.5625}$

1) wite radical
c) $\sqrt{5.8}$

$$
\begin{aligned}
& =\sqrt{\frac{5625 \div 5}{10000 \div 5}} \\
& =\sqrt{\frac{1125 \div 5}{2000 \div 5}} \\
& =\sqrt{\frac{225}{400} \div 5}
\end{aligned}
$$

2) reduce
radicand

$$
\begin{aligned}
& =\sqrt{\frac{225}{400} \div 5} \div 5 \\
& =\sqrt{\frac{45}{80} \div 5} \div 5 \\
& =\sqrt{\frac{9}{16}}=\frac{\sqrt{9}}{\sqrt{16}}=\frac{3}{4} \text { ration }
\end{aligned}
$$

Preview 2

1.3 Mixed and Entire Radicals

Focus: convert radicals between entire and mixed forms

The Product Rule for Square Roots and Cube Roots
For any real numbers A and B :

$$
\begin{aligned}
& \sqrt{A \cdot B}=\sqrt{A} \cdot \sqrt{B} \\
& \sqrt[3]{A \cdot B}=\sqrt[3]{A} \cdot \sqrt[3]{B}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\sqrt{2} \cdot \sqrt{8} & =\sqrt{2 \cdot 1+i p z})^{\sqrt[3]{40}}=\sqrt[3]{5 \cdot 8} \\
& =\sqrt[3]{16} \\
& =4
\end{aligned} \quad=\sqrt[3]{5} \cdot \sqrt[3]{8} \\
& =2 \cdot \sqrt[3]{5} \\
& =2 \sqrt[3]{5}
\end{aligned}
$$

Terminology

Entire Radical: a radical in the form \sqrt{x}
Examples: $\sqrt{35}, \sqrt{68}$

Mixed Radical: a radical in the form $a \sqrt{x}$
Examples: $3 \sqrt{5},-4 \sqrt{21}$

Changing entire radicals to mixed radicals
$\begin{aligned} \sqrt{20} & =\sqrt{2 \cdot 2 \cdot 5} \\ \frac{7}{\frac{\text { ntract }}{20}(c)} & =\sqrt{2^{2} \cdot 5}\end{aligned}$

1) write radicand
in P prime factored form
$\stackrel{4}{4}$

$$
\begin{aligned}
\frac{7}{\substack{\text { entrectic } \\
\text { ar }}} & =\sqrt{2^{2} \cdot 5} \\
& =\sqrt{2^{2}} \cdot \sqrt{5} \\
& =2 \cdot \sqrt{5} \\
& =2 \sqrt{5} \\
\sqrt{20} & =\sqrt{4 \cdot 5} \\
& =\sqrt{4} \sqrt{5} \\
& =2 \sqrt{5}
\end{aligned}
$$

(2) (2)

$$
\begin{gathered}
\text { mixed } \\
\text { radical }
\end{gathered}
$$

We always trick e the radicand is as small as possible.

Perfect Square Method

$$
\begin{aligned}
\sqrt{48} & =\sqrt{16 \times 3} \\
& =\sqrt{16} \times \sqrt{3} \\
& =4 \times \sqrt{3} \\
& =4 \sqrt{3}
\end{aligned}
$$

Prime Factors Method

$$
\begin{aligned}
\sqrt{48} & =\sqrt{2 \times 2) \times(2 \times 2 \times 3} \\
& =\sqrt{2 \times 2} \times \sqrt{2 \times 2} \times \sqrt{3} \\
& =2 \times 2 \times \sqrt{3} \\
& =4 \times \sqrt{3} \\
& =4 \sqrt{3}
\end{aligned}
$$

Perfect Cube Method

$$
\begin{aligned}
\sqrt[3]{24} & =\sqrt[3]{8 \cdot 3} \\
& =\sqrt[3]{8} \sqrt[3]{3} \\
& =2 \sqrt[3]{3}
\end{aligned}
$$

Prime Factors Method

$$
\sqrt[6]{24}=\sqrt[3]{(2 \cdot 2 \cdot 2) 3}
$$

$$
=2 \sqrt[3]{3}
$$

Try "Check You Understanding" p 23, p 24

Check Your Understanding
2. Write each entire radical as a mixed radical.
a) $\sqrt{63}$
b) $-\sqrt[3]{80}$
c) $\sqrt[4]{243}$

$$
\underbrace{243}_{2+4+3}
$$

q is douse by 3

$$
\Rightarrow 243 \text { is }
$$

divisible by

$$
\begin{aligned}
& 6 \sqrt{20}=\sqrt{6^{2} \cdot 20}=\sqrt{720} \\
& 2 \sqrt[3]{7}=\sqrt[3]{2^{3} \cdot 7}=\sqrt[3]{56} \\
& 2 \sqrt[4]{3}=\sqrt[4]{2^{4} \cdot 3}=\sqrt[4]{48}
\end{aligned}
$$

Can you figure out the process?

To change a mixed radical to an entire radical

- Identify the index of the radicand, n
- Raise the coefficient of the radical to the nth power, put it inside the radical sign
- Multiply the numbers to create the new radicand
- If the coefficient is negative, be careful!
odd index, include the negative sign as part of the radicand
- even index, leave negative sign out in front of radical

$$
\begin{aligned}
& 2 \sqrt[2]{3}=\sqrt{2^{2} \cdot 3} \text { change to entire form } \quad \text { check: } \\
& \begin{aligned}
\operatorname{index}=21 & =\sqrt{4 \cdot 3} \\
& =\sqrt{12}
\end{aligned} \\
& \begin{array}{l}
\text { check: } \\
\text { 1) yo could charge }
\end{array} \\
& \text { the entori rudich } \\
& \text { eek }+ \text { mixed fin }
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{12} & =\sqrt{2 \cdot 6} \\
& =\sqrt{2 \cdot 2.3}
\end{aligned}
$$

$$
=2 \sqrt{3}
$$

$O R$
2) evaluate $\left.\begin{array}{l}\sqrt{12} \\ 2 \sqrt{3}\end{array}\right\} \begin{aligned} & \text { arethy } \\ & \text { tee sane? } \\ & \text { sate? }\end{aligned}$

$$
\underbrace{\sqrt[3]{5}}_{\sim_{2}^{3}}=\sqrt[3]{2^{3} \cdot 5}
$$

$$
\begin{aligned}
& =-\sqrt{36 \cdot 3} \\
& =-\sqrt{108} \\
-2 \sqrt[3]{4} & =\sqrt[3]{(-2)^{3} \cdot 4} \\
& =\sqrt[3]{-8 \cdot 4} \\
& =\sqrt[3]{-32}
\end{aligned}
$$

$$
\left\lvert\, \begin{aligned}
& 2 \sqrt[3]{5}=\sqrt[3]{2^{3} \cdot 5} \\
&=\sqrt[3]{8 \cdot 5}=\sqrt[3]{40} \\
&\left(\frac{3}{2} 2 \times x^{3}\right) \\
& 3 \sqrt[4]{4}=\sqrt[4]{3^{4} \cdot 4} \\
&=\sqrt[4]{81 \cdot 4} \\
&=\sqrt[4]{324}
\end{aligned}\right.
$$

- Work text, check understanding p $25 \nRightarrow 3$
- Ty some 1.3 questions, starting on $p 26$
1.4 Powers with Positive Rational Exponents

radical from expontiol form

$$
\sqrt[4]{5^{3^{2}}}=5^{\frac{\operatorname{tep}}{2 / 2}}
$$

Worktext examples, pages 37-39

Example 1 Writing Powers with Rational Exponents as Radicals

e) get numb r answer

Write each power as a radical, then evaluate the radical.
a) $49^{\frac{1}{2}}$
b) $(-64)^{\frac{1}{3}}$
c) $\left(\frac{16}{25}\right)^{\frac{1}{2}}$
d) $81^{0.25}$
a) $49^{1 / 2^{t x^{\text {in et }}}}=\sqrt[2]{49^{1}}$
b) $(-64)^{1 / 3}=\sqrt[3]{-64^{1}}$
$=\sqrt{49}$

$$
\text { or }=\sqrt[3]{-64}
$$

$$
=\quad 7
$$

$$
=-4
$$

c) $\left(\frac{16}{25}\right)^{1 / 2}=\sqrt[2]{\frac{16}{25}}$
$=\sqrt{\frac{16}{25}}=\frac{4}{5}$
d) $81^{0.25}=81^{1 / 4}$

$$
=\sqrt[4]{81^{\prime}}=3
$$

Example $2 \quad$ Writing Radicals as Powers with Rational Exponents

Write each entire or mixed radical as a power with a rational exponent.
a) $\sqrt[3]{1.2}$
b) $\sqrt[4]{\frac{9}{25}}$
c) $4 \sqrt{3}$
denom $=$ index
a) $\sqrt[3]{1.2^{1}}=1.2^{1 / 3^{0}}$
b) $\sqrt[4]{\frac{9}{25}}=\left(\frac{9}{25}\right)^{1 / 4} \quad$ use brevets to $\begin{aligned} & \text { make it cleo! }\end{aligned}$
c) $4 \sqrt{3}$

1) first, we'll change it to entire form
2) then, write as a rations exponent
$4 \sqrt[4]{3}=\sqrt{4^{2} \cdot 3}$

$$
\begin{aligned}
4+\sqrt{3} & =\sqrt{4^{2} \cdot 3} \\
& =\sqrt{16 \cdot 3} \quad 48^{1 / 2} \\
& =\sqrt{48}
\end{aligned}
$$

Example 3 Evaluating Powers with Rational Exponents I

Write each power as a radical, then evaluate the radical.
a) $4^{\frac{3}{2}}$

$$
\text { b) }\left(-\frac{1}{8}\right)^{\frac{2}{3}}
$$

$$
\text { c) } 100^{1.5}
$$

a) $4^{3 / 2}$

$$
\begin{aligned}
& =\sqrt[2]{4^{3}} \\
& =\sqrt[2]{64} \\
& =8
\end{aligned}
$$

$$
\text { b) }(-1 / 8)^{2 / 3}=\sqrt[3]{(-1 / 8)^{2}}
$$

$$
\left(-\frac{1}{8}\right)\left(-\frac{1}{8}\right)
$$

$$
=\sqrt[3]{\frac{1}{64}}
$$

$$
=+\frac{1}{64}
$$

For next class

- Complete the "Recap" from tonight!

- Do all you can without looking at examples/worktext. Then, switch to a different color of pen/pencil and complete the rest of it. This way you can see what you might need to spend more time on.
- Finish worktext questions 1.3, and you can start with those from 1.4. You don't get marks for doing these. Doing them helps you learn/practice the concepts.

