Class_02 May 4 - Transforming Functions

Thursday, May 4, 2023 12:43 PM

Tonight's Class:

- Translations, wrapping up
- Reflections & Stretches
- Combining transformations

Last class....

$$y = \frac{2}{x+3} \left\{ x \mid x \neq -3, x \in \mathbb{R} \right\}$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(4)$$

$$(5)$$

$$(4)$$

$$(5)$$

$$(5)$$

$$(6)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

Domain

all allowable x-values. Can't use x-values that "BREAK" the function machine

Range All y-values

WB - domain/range

TRANSLATIONS – sliding graphs left/right/up/down

Some specific examples:

- when x is replaced with x-8, the graph will move 8 right.
- when x is replaced with x + 6, the graph will move 6 left.
- when y is replaced with y-4, the graph will move 4 up.
- when y is replaced with y+7, the graph will move 7 down.

y = f(x) changel to y = f(x-8)moves onsind graps 8 wits RIGHT

$y = x^2$
 y = x + 5
$y = \log_5 x$
$y=2^{x}$

Notice for this one, the "5" was already there in the original

equation. The ONLY change, is the graph is shifted right 3.

Base Function Equation	Transformed Equation	Mapping	Point on original graph	Its image point
$y = x^2$	$ \oint_{y-4=x^2} up \mathcal{H} $	$(x,y) \rightarrow (x,y+4)$	(-3, 9)	(-3, 13)
y = x + 5	y = (x-3)+5	(x1y) -> (x+3,y)	(2,7)	(5,7)
$y = \log_5 x$	$y = \log_5(x-2) + 3$ $y = \log_5(x-2) + 3$ $y = 1$	(x,y) → (x+2, y+3)	(25, 2)	(27,5)
$y=2^{x}$	$y = 2^{x-3} + 8$ $y = 8$	(x,y)→ (x+3, y+8)	$\left(-1,\frac{1}{2}\right)$	(2, 8 ^{1/2})
$y = \frac{2}{x - 4}$	$y = \frac{2}{(x+3)-4} + 6$ 3 kft 6 up	(x,y) -> (x-3,y+6)	$\left(8,\frac{1}{2}\right)$	(5,612)
$x^2 + y^2 = 16$	$(x-5)^2 + (y+3)^2 = 16$	(x,y) -> (x+5, y-3)	(-4, 0)	(1,-3)
	Sright 3 down			

To Try

Shown is the graph of y = f(x).

a) Identify the transformations that result when the equation

b) Make a table of key points on the original graph and the corresponding image points on the image graph.

- c) Sketch the image graph.
- d) State the domain and range of the image graph. (Assume that the line segments stop.)

Example

Given the mapping notation for a transformation, we can write the transformed equation.

$$(x, y) \rightarrow (x-8, y+3)$$

$$(x, y) \rightarrow (x-8, y+3)$$
 8 left and 3 up

Original function
$$y = f(x)$$

New function

$$y = f(x+8) + 3$$

or $y-3 = f(x+8)$

Mapping notation
$$(x, y) \rightarrow (x+4, y-9)$$
 4 Asht 9 Jown Original function $y = f(x)$

$$y = f(x - t) - c$$

$$y = f(x-4) - 9$$
 $y = f(x-4) - 9$
 $y + 9 = f(x-4)$

WB - domain/range, looking at graphs

Translations Review - talk to each other, agree on your answers

Given the graph of y = f(x) shown above, match the following four function equations with their graphs (A, B, C or D)

1.
$$y = f(x) + 2$$
 graph:

2.
$$y = f(x) - 2$$
 graph:

3.
$$y = f(x+2)$$
 graph: 6

Given the graph of y=g(x) shown above, match the following four function equations with their graphs (A, B, C, or D)

1.
$$y = g(x) + 3$$
 graph: ______

2.
$$y = g(x) - 3$$
 graph:

3.
$$y = g(x+3)$$
 graph: ______

4.
$$y = g(x-3)$$
 graph: _____

Pre-Calc 12 - Unit 1 Page 10

STRETCHES - horizontal and vertical stretches

When y = f(x) is changed to y = a f(x), each point on the original graph has its y-value multiplied by "a."

When y = f(x) is changed to y = f(bx), each point on the original graph has its x-value multiplied by the <u>reciprocal</u> of b. This is a

This is a vertical stretch, by a factor of a.

When the stretch factor is a number between -1 and 1, we call it a compression. Otherwise, we call it an expansion.

Examples

a) Identify each change, when y = f(x) is changed to:

$$y=8f(x)$$
 VE, 8 $y=f(2x)$ HC, $\frac{1}{2}$ $y=\frac{1}{2}f(x)$ VC, $\frac{1}{2}$ $y=f(\frac{1}{4}x)$ 4 $y=f(x)$ VE, 2

b) Write the new equation that causes y = f(x) to be stretched as follows:

The graph of y = f(x) is shown at right. When changed to y = 3f(x),

• identify the transformation (x, y) = 3f(x)

- · identify the transformation (YE
- · complete the table and mapping
- sketch the graph of y = 3f(x)

 $(x_1y) \rightarrow (x_13y)$

, 3)/	
	Image points

Remember, in translations, if the change is IMMEDIATELY next to the variable, we have to "reverse" what it says:

A similar thing happens with expansions/compressions:

$$2y = f(x)$$

$$\sqrt{c} \quad \frac{1}{2}$$

$$y = f(3x)$$

$$\frac{1}{3} \quad \text{HC by } \frac{1}{3} \quad \frac{\text{host partial}}{\text{compressor}}$$

$$y = f(\frac{2}{5}x)$$

$$HE = \frac{5}{2}$$

Here, we do NOT need to use the reciprocal:

To Try

The graph of y = f(x) is shown at right. When changed to $y = f\left(\frac{1}{2}x\right)$,

- · identify the transformation
- complete the table and mapping
 sketch the graph of

To Try

The graph of y = f(x) is shown at right. When changed to $y = -\frac{1}{2}f(x)$,

- identify the transformation
- complete the table and mapping
- sketch the graph of $y = -\frac{1}{2} f(x)$

Image points

x	y
0	-5
1	0
3	4
5	0
6	-5

Check-in

- -fill in the table in your notes, page 12
- -compare your answers with someone else

1.3 Combining Transformations

Summary of Transformations. Original Equation $\sqrt{y = f(x)}$

Summary of Transform	nations. Originai Equa	y = f(x)
Translations		
	Graph moves	Mapping
y+4=f(x)	4 down	$(x,y) \rightarrow (x, y-4)$
y - 5 = f(x)	5 up	(x,y) -> (x,y+5)
y = f(x+2)	2 left	(x,y) -> (x-2,y)
y = f(x - 6)	6 right	(x,y) -> (x+6,y)
Stretches		
	Graph is stretched	Mapping
y = 5f(x)	V€, 5	(x,y) -> (x, 5y)
$\frac{3}{2}y = f(x)$	VC, $\frac{2}{3}$	(x,y) → (x, \(\frac{2}{5}\))
y = f(4x)	HC, 4	(x,y)->(\frac{1}{4}x,y)
$y = f\left(\frac{1}{3}x\right)$	HE 3	(x,y)→ (3x,y)
Reflections		
	Reflects across	Mapping
y = -f(x)	X-a Xij	$(x,y) \rightarrow (x,-y)$
y = f(-x)	y-axis	(x,y) -> (-x,y)

Pre-Calc 12 – Unit 1 Page 13

Question......

If more than one transformation is applied to a graph, does the *order* in which the transformations are done change the final graph?

WB - explore this

Conclusions:

Yes, it makes a difference. The order in which we do a reflection and a translation changes the final result.

y = f(x) is shown on the grid

- Reflect across the x-axis and sketch the result.
- Take that graph and translate it 4 units up to get your FINAL graph

Origi	nal	
х	У	
-4	4	
0	6	
2	2	
4	2	

FINAL

X	-9
-4	-4
0	-6
2	-2
4	42

$(x_1 y)$	\rightarrow	(x)	- 4+	4)

y = f(x) is shown on the grid

- Translate 4 units up and sketch the result
- Take that graph and reflect it across the x-axis to get your FINAL graph

x	y
-4	4
0	6
2	2
4	2

$$\begin{array}{c} (x_1y) \rightarrow (x_1 - (y+4)) \\ \text{or, simplifying:} \\ (x_1y) \rightarrow (x_1 - y - 4) \end{array}$$

Pre-Calc 12 - Unit 1 Page 13

Ouestion.....

If more than one transformation is applied to a graph, does the order in which the transformations are done change the final graph?

\$

YES!

- Apply transformations in this order, to get the final graph:

 (Ompressions)
 - 2) translations

Example List all the transformations, then give the mapping.

b) y = 2f(3x-6)+5

y = 2f(3(x-2)) + 5

Lidn't finish this get!

Example

A

Identify the transformations that need to happen, to change the graph of y = f(x) on the left to the graph shown at right. Determine the equation of the graph at right.

For next class Complete:

- First Night Review questions

Chapter 1 HW, #1-3, 6-7

More practice available in textbook

· Also, you can look at these sites https://www.mathsisfun.com/sets/function-transformations.html

https://www.khanacademy.org/math/algebra2/manipulatingfunctions/stretching-functions/e/shifting and reflecting functions

https://www.purplemath.com/modules/fcntrang.htm Please erase your whiteboard area, and return the whiteboards, erasers, pens and calculators. Thanks!!