Class_02 May 4 - Transforming Functions

Thursday, May 4, 2023
 12:43 PM

Tonight's Class:

- Translations, wrapping up
- Reflections \& Stretches
- Combining transformations

Last class....

$$
\begin{aligned}
& y=\frac{2}{x+3} \quad\{x \mid x \neq-3, x \in \mathbb{R}\} \\
& \begin{array}{l}
\text { what x-value } \\
\text { cant } b \text { used? }
\end{array}
\end{aligned}
$$

Domain

all allowable x-values. Can't use x-values that "BREAK" the function machine

Range
All y-values

WB - domain/range

TRANSLATIONS - sliding graphs left/right/up/down

Some specific examples
when x is replaced with $x-8$, the graph will move 8 right. when x is replaced with $x+6$, the graph will move 6 left. when y is replaced with $y-4$, the graph will move 4 up.
when y is replaced with $y+7$, the graph will move 7 down

To Try
Shown is the graph of $y=f(x)$.
a) Identify the transformations that result when the equation is changed to: $y-2=f(x+3)$ left $(x, y) \rightarrow(x \sim 3, y+2)$ 2 up
b) Make a table of key points on the original graph and the corresponding image points on the image graph.
Base

\boldsymbol{x}	\boldsymbol{y}
-1	-3
2	2
3	-3

$$
\begin{aligned}
& \text { Image } \\
& x-3 \\
& x+2 \\
& \hline-4 \\
& -1 \\
& -1 \\
& -1 \\
& 0
\end{aligned}
$$

c) Sketch the image graph.
d) State the domain and range of the image graph. (Assume that the line segments stop.)

$$
\begin{aligned}
& \{x \mid-4 \leq x \leq 0, x \in \mathbb{R}\} \\
& \{y \mid-1 \leq y \leq 4, y \in \mathbb{R}\}
\end{aligned}
$$

Example

Given the mapping notation for a transformation, we can write the transformed equation.

WB - domain/range, looking at graphs

Given the graph of $y=f(x)$ shown above, match the following four function equations with their graphs (A, B, C or D)

1. $y=f(x)+2 \quad$ graph: A

B.)
2. $y=f(x)-2$ graph: \square
3. $y=f(x+2)$ graph: B
4. $y=f(x-2)$ graph: C

D.)

siven the graph of $y=g(x)$ shown above, match the following four function equations with their graphs (A, B, C, or D)
5. $y=g(x)+3$ graph: $\not \subset$
6. $y=g(x)-3$ graph: \square
7. $y=g(x+3)$ graph: D
8. $y=g(x-3)$ graph: B

D.)

1.2 Reflections and Stretches

Reflections

Across the x-axis

all
$y^{\text {-values }}$
changed
to itsit

Image point for point $A:(-4,-3)$

Original equation:
$y=f(x)$
New equation: $-y=f(x)$ but we usually write that instead as $y=-f(x)$
Mapping: $(x, y) \rightarrow(x,-y)$
Across the y-axis

Image point for point A: $(4,3)$
Original equation: $\quad y=f(x)$
New equation: $y=f(-x)$

$$
(x, y) \rightarrow(-x, y)
$$

Points that do not change under a given transformation are called invariant points.
Which points are invariant in the reflections above?

Mapping: $\quad y^{\prime=f(-x)}(x, y) \rightarrow(-x, y)$

Stretches $\left[\begin{array}{l}\text { expansions } \\ \text { compressions }\end{array}\right.$

Vertical - all y-values are multiplied by a number, the stretch factor
Key points

x	y			
-2	-1			
-1	0			
0	1			
1	0			
2	-1	\quad	Image points	
:---:	:---:			
x	$3 y$			
-2	-3			
-1	0			
0	3			
1	0			
2	-3			

- multiply every y-value
by 3

Mappings $(x, y) \rightarrow(x, 3 y)$
Horizontal - all x-values are multiplied by a number, the stretch factor

Kep points

x	y
-2	-1
-1	0
0	1
1	0
2	-1

Image points

$2 x$	y
-4	-1
-2	0
0	1
2	0
4	-1

$$
\text { Mapping: } \quad(x, y) \rightarrow(2 x, y)
$$

Which points ore invarianzin the stretches above ?

$$
\left\{\begin{array}{l}
\text { vertical stretch - any point on the } x \text {-axis } \\
\text { horizontal stretch -any point on the } y \text {-axis }
\end{array}\right.
$$

Pre-Calc 12 - Unit 1
Page 10

STRETCHES - horizontal and vertical stretches

When $y=f(x)$ is changed to $y=a f(x)$, each point on the original graph has its y-value multiplied by " a."
This is a vertical stretch, by a factor of a.

When $y=f(x)$ is changed to $y=f(b x)$, each point on the original graph has its x-value multiplied by the reciprocal of b. This is a horizontal stretch by a factor of $\frac{1}{b}$.

When the stretch factor is a number between -1 and 1 , we call it a compression. Otherwise, we call it an expansion.

Examples

a) Identify each change, when $y=f(x)$ is changed to:

$$
\begin{array}{llll}
y=8 f(x) & \text { WE, } 8 & y=f(2 x) & \text { MC }, \frac{1}{2}
\end{array} \quad y=\frac{1}{2} f(x) \quad \text { VC, } \frac{1}{2}
$$

b) Write the new equation that causes y=f(x) to be stretched as follows:

Vertical stretch, by $\frac{2}{3} \quad$ OR Horizontal stretch, by $\frac{5}{2} \quad y=f\left(\frac{2}{5} x\right)$

$$
y=\frac{2}{3} f(x) \quad \frac{O R}{\frac{3}{2}} y=f(x)
$$

To Th

The graph of $y=f(x)$ is shown at right. When changed to $y=3 f(x)$,

- identify the transformation
- complete the table and mapping
$V E, 3$
- sketch the graph of $y=3 f(x)$ Image points

$$
(x, y) \rightarrow(x, 3 y)
$$

$$
\begin{array}{|r|c|}
\hline x & y \\
\hline-2 & 4 \\
-1 & 1 \\
0 & 0 \\
1 & 1 \\
2 & 4 \\
\hline
\end{array}
$$

x	$3 y$
-2	12
-1	3
0	0
1	3
2	12

$(x, y) \rightarrow$

Remember, in translations, if the change is IMMEDIATELY next to the variable, we have to "reverse" what it says: Truncating

$$
\begin{gathered}
y=f(x+5) \\
5 \text { left } \\
y-2=f(x) \\
2 \text { up }
\end{gathered}
$$

A similar thing happens with expansions/compressions:

$$
\begin{aligned}
& 2 y=f(x) \\
& V C \text { by } \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& y=f(3 x) \\
& y=\frac{1}{3}+\left(\frac{2}{5} x\right) \\
& H E \frac{5}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 3 x \text {) } \\
& \text { HC by } \frac{1}{3} \text { horizontal } \\
& \text { compressor }
\end{aligned}
$$

comprason

Here, we do NOT need to use the reciprocal:

$$
y=5 f(x) \text { VE by S }
$$

To Try

The graph of $y=f(x)$ is shown at right. When changed to $y=f\left(\frac{1}{2} x\right)$,

- identify the transformation
- complete the table and mapping HE, 2
- sketch the graph of
1

$$
(x, y) \rightarrow(2 x, y)
$$

To Try

The graph of $y=f(x)$ is shown at right. When changed to $y=-\frac{1}{2} f(x)$,

- identify the transformation
- complete the table and mapping

- sketch the graph of $y=-\frac{1}{2} f(x)$

Image points

x	y
0	-5
1	0
3	4
5	0
6	-5

x	$-1 / 2 y$
0	$5 / 2=2^{1 / 2}$
1	0
3	-2
5	0
6	$5 / 2$

$$
(x, y) \rightarrow\left(X,-\frac{1}{2} y\right)
$$

Check-in
-fill in the table in your notes, page 12 -compare your answers with someone else

1.3 Combining Transformations

Summary of Transformations. Original Equation. $y=f(x)$		
Translations		
	Graph moves...	Mapping
$y+4=f(x)$	4 down	$(x, y) \rightarrow(x, y-4)$
$y-5=f(x)$	5 up	$(x, y) \rightarrow(x, y+5)$
$y=f(x+2)$	2 left	$(x, y) \rightarrow(x-2, y)$
$y=f(x-6)$	6 right	$(x, y) \rightarrow(x+6, y)$
Stretches		
	Graph is stretched...	Mapping
$y=5 f(x)$	$V E, S$	$(x, y) \rightarrow(x, 5 y)$
$\frac{3}{2} y=f(x)$	$V C, \frac{2}{3}$	$(x, y) \rightarrow\left(x, \frac{2}{3} y\right)$
$y=f(4 x)$	HC, $\frac{1}{4}$	$(x, y) \rightarrow\left(\frac{1}{4} x, y\right)$
$y=f\left(\frac{1}{3} x\right)$	HE 3	$(x, y) \rightarrow(3 x, y)$
Reflections		
	Reflects across...	Mapping
$y=-f(x)$	$x-a x i s$	$(x, y) \rightarrow(x,-y)$
$y=f(-x)$	$y-a \times i s$	$(x, y) \rightarrow(-x, y)$

Pre-Calc 12 - Unit 1 Page 13

Question......

If more than one transformation is applied to a graph, does the order in which the
transformations are done change the final graph?
$y=f(x)$ is shown on the grid

- Reflect across the x-axis and sketch the result.
- Take that graph Original Reflected and translate it 4 units up to get your FINAL graph

x	y			
-4	4			
0	6			
2	2			
4	2	$\quad$$\quad$		
:---	:---			
		\quad		
:---	:---			

FINAL

$y=f(x)$ is shown on the grid

- Translate 4 units up and sketch the result
- Take that graph and reflect it across the x-axis to get your FINAL graph

Original	Translated	
x y -4 4 0 6 2 2 4 2\quad 		

Conclusions:

Yes, it makes a difference. The order in which we do a reflection and a translation changes the final result.

$y=f(x)$ is shown on the grid

- Reflect across the x-axis and sketch the result.
- Take that graph Original Reflected

FINAL

x	$-y+4$
-4	0
0	-2
2	2
4	2

$$
(x, y) \rightarrow(x,-y+4)
$$

$y=f(x)$ is shown on the grid

- Translate 4 units up and sketch the result
- Take that graph and reflect it across the x-axis to get your FINAL graph

Original	Translated	
x y -4 4 0 6 2 2 4 2$\quad$$x$ $y+4$ -4 8 0 10 2 6 4 6		

finaL

\times	$-(4$
-4	-8
0	-10
2	-6
4	-6

$$
(x, y) \rightarrow\left(x_{1}-(y+4)\right)
$$

OR, simplifying

$$
(x, y) \rightarrow(x,-y-4)
$$

Question.......

If more than one transformation is applied to a graph, does the order in which the transformations are done change the final graph?
\$

YES!

Apply transformations in this order, to get the final graph:

1) reflections a expanions (compressiuns
2) translations

Example List all the transformations, then give the mapping.

Example
Identify the transformations that need to happen, to change the graph of $y=f(x)$ on the left to the graph shown at right. Determine the equation of the graph at right.

For next class

Complete:

- First Night Review questions
- Chapter 1 HW, \#1-3, 6-7

More practice available in textbook

- Also, you can look at these sites
https://www.mathsisfun.com/sets/function-transformations.html
https://www.khanacademy.org/math/algebra2/manipulating-
functions/stretching-functions/e/shifting and reflecting functions

Please erase your whiteboard area, and return the whiteboards, erasers, pens and calculators. Thanks!!

