## Tonight's Class:

- Check-in and worksheets
- Check-in based on email questions
- .irst night Review Worksheet
- Common Graphs Worksheet
- Translations
- Reflections \& Stretches
- Combining transformations

First Night Review Worksheet - \#3, 6, 7, 8
Common Graphs Worksheet - base graphs

Last class....

INPUT x


Domain
all allowable $x$-values. Can't use $x$-values that "BREAK" the function machine

Range
All $y$-values

Transformations
PreCalc 12 - Unit 1 Page 4
1.1

The graph of the base absolute value function is shown at right, and below are three transformed equations.

For each one:

- Sketch its graph on the grid.
- Describe, in words, the transformation that happened.
- Describe the transformation by giving its mapping.
- State the domain and range.

$$
\begin{aligned}
& x \mid y \\
& 3|3-4|=|-1|=1 \\
& 4|14-4|=101=0 \\
& 5||5-4|=11|=1 \\
& (x, y) \rightarrow(x+4, y) \\
& \{x \mid x \in \mathbb{R}\} \\
& \{y \mid y \geq 0, y \in \mathbb{R}\}
\end{aligned}
$$

$$
f(x)=|x|+3
$$


 3 up

$$
(x, y) \rightarrow(x, y+3)
$$

$$
\{x \mid x \in \mathbb{R}\}
$$

$$
\{y \mid y \geq 3, y \in \mathbb{R}\}
$$



- moved onjint graph

2 left, and 4 down

$$
(x, y) \rightarrow(x-2, y-4)
$$

$$
\{x \mid x \in \mathbb{R}\} \quad\{y \mid y \geq-4, y \in \mathbb{R}\}
$$

Points on an original graph correspond with points on a transformed graph, often called the image graph. We say that each original point is mapped to an image point.


Often equations are arranged with the " $y$ " term isolated:

$$
y=f(x-h)+k_{\substack{\text { version } \\ \text { transition }}}^{\substack{\text { Hothontal } \\ \text { transaction }}}
$$

Simplest equation:

$$
y=f(x+2) \quad 2 \text { left }
$$

$$
\begin{array}{ll}
y=f(x+2) \\
y=f(x-5) & 5 \text { right } \\
& \text { l left }
\end{array}
$$

$$
\begin{aligned}
& \text { translation. " } h \text { " } \\
& \text { Move }
\end{aligned}
$$

$$
\underbrace{\text { wits }}_{\text {more }}
$$

$$
\begin{aligned}
& y=+1 \\
& y=f(x+4) \quad 4 \text { left }
\end{aligned}
$$

$$
\begin{aligned}
& y=f(x)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
y-3=f(x) \\
y=f(x)+3
\end{array}\right\} \text { up }
\end{aligned}
$$

On page 4, the original function can be written either $f(x)=|x|$ or $y=|x|$

## When we change the equation, we get different graphs

- $y=|x-4|$ moves the graph 4 RIGHT

When $x$ is replaced with $x-4$, the graph moves 4 right

- $y=|x|+3$ can also be written as $y-3=|x|$ The nice thing about writing it the second way is it's easier to see that when $y$ is replaced with $y-3$, the graph moves 3 UP
- $y=|x+2|-4$ causes the graph to move 2 LEFT and also 4 DOWN

If we want, we can re-write this as $y+4=|x+2|$

## $y=f(x-h)$ results in a horizontal translation

$y-h=f(x)$ OR $y=f(x)+h \quad$ result in a vertical translation

## TRANSLATIONS - sliding graphs left/right/up/down

Some specific examples
when $x$ is replaced with $x-8$, the graph will move 8 right. when $x$ is replaced with $x+6$, the graph will move 6 left.
when $y$ is replaced with $y-4$, the graph will move 4 up. when $y$ is replaced with $y+7$, the graph will move 7 down.


$$
\begin{aligned}
\left(-1, \frac{1}{2}\right) \rightarrow & \\
\rightarrow & \left(-1, \frac{213}{32}+\frac{2}{3} \frac{2}{3}\right) \\
& =\left(-1, \frac{3}{6}+\frac{4}{6}\right) \\
& =\left(-1, \frac{7}{6}\right)
\end{aligned}
$$

## To Try

Shown is the graph of $y=f(x)$
a) Identify the transformations that result when the equation is changed to: $y-2=f(x+3)$
b) Make a table of key points on the original graph and the corresponding image points on the image graph.
Base

| $x$ | $y$ |
| :---: | :---: |
| -1 | -3 |
| 2 | 2 |
| 3 | -3 |

c) Sketch the image graph.


$$
(x, y) \rightarrow(x-3, y+2)
$$

d) State the domain and range of the image graph. (Assume that the line segments stop.)

$$
\begin{aligned}
& \{x \mid-4 \leq x \leq 0, x \in \mathbb{R}\} \\
& \{y \mid-1 \leq y \leq 4, y \in \mathbb{R}\}
\end{aligned}
$$

Example
Given the mapping notation for a transformation, we can write the transformed equation.



Translations Review - talk with your group, agree on answers.


Given the graph of $y=f(x)$ shown above, match the following four function equations with their graphs (A, B, C or D)

1. $y=f(x)+2$ graph: $A$
B.) + left 2
2. $y=f(x)-2$
don
3. $y=f(x+2)$ graph: $B$

Left
4. $y=f(x-2)$ graph: $C$

D.) $\quad \operatorname{dom}$



### 1.2 Reflections and Stretches

## Reflections

Across the $x$-axis

| Original <br> keypoints | Reflected <br> keypoints |  |
| :--- | :--- | :---: |
| $x$ $y$ <br> -4 3 <br> -3 2 <br> 1 4 <br> 3 0 <br> -4 -3 <br> -3 -2 <br> 1 -4 <br> 3 0 |  |  |

$\begin{array}{lr}\text { Image point for point A: } & (-4,-3) \\ \text { Original equation: } & y=f(x)\end{array}$
New equation:
Mapping:
$-y=\frac{f(x)}{-1}$ or $y=-f(x)$


Across the $y$-axis

| Original key points |  | Reflected key points |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $x$ | $y$ | $x$ | $y$ | all $x$ cond |
| $-4$ | 3 | 4 | 3 | \% si8n |
| -3 | 2 | 3 | 2 | , |
| 1 | 4 | $-1$ | 4 | $1$ |
| 3 | 0 | -3 | 0 | , |


| Image point for point A: | $(4,3)$ |  |
| :--- | :--- | :--- |
| Original equation: $y$ | $=f(x)$ |  |
| New equation: | $y$ | $=f(-x)$ |
| Mapping: | $(x, y)$ | $\rightarrow(-x, y)$ |




Pre-Calc 12 - Unit 1
Page 8

## REFLECTIONS - reflecting graph across either $\boldsymbol{y}$-axis or $\boldsymbol{x}$-axis

Some specific examples:

- when $x$ is replaced with $-x$, the graph will be reflected across the $y$-axis.
- when $y$ is replaced with $-y$, the graph will be reflected across the $x$-axis.
- If instead of $y=f(x)$ we have $\underbrace{y=-f(x)}$, the graph is reflected across $x$-axis.

> means
> $-y=f(x)$

The graph of the base radical function is shown.

For each transformed equation below

- Sketch its graph on the grid.
- Give its domain and range, using set notation.
- Describe, in words, what change occurred.
- Describe the transformation by giving


$$
\begin{aligned}
& \text { notation. } \\
& \text { Describe, in words, what change } \\
& \text { occurred. } \\
& \text { Describe the transformation by giving } \\
& \text { its mapping. } \\
& \{x \mid x \geq 0, x \in \mathbb{R}\} \\
& \{y \mid y \leq 0, y \in \mathbb{R}\} \\
& (x, y) \rightarrow(x,-y) \\
& \text { reflect acts } x \text {-axis } \\
& \{x \mid x \leq 0, x \in \mathbb{R}\}^{\text {a osJl }} y^{-\alpha x^{2}} \\
& \{y \mid y \geq 0, y \in \mathbb{R}\}
\end{aligned}
$$

Pre-Calc 12 - Unit 1
Page 9

## Stretches



Vertical - all $y$-values are multiplied by a number, the stretch factor


Mapping: $(x, y) \rightarrow(x, 3 y)$
Horizontal - all x-values are multiplied by a number, the stretch factor



$$
\text { Mapping: }(x, y) \rightarrow(2 x, y)
$$



Mapping: $\quad(x, y) \rightarrow(2 x, y)$

Which points are invariant in the stretches above

$$
\begin{aligned}
& \text { horizontal expansion/compresum - invariant points are on } y \text {-axis } \\
& \text { vertical expansion / compression - invaiat points are on } x \text {-axis }
\end{aligned}
$$

Pre-Calc 12 - Unit 1
Page 10

## STRETCHES - horizontal and vertical stretches

When $y=f(x)$ is changed to $y=a f(x)$, each point on the original graph has its $y$-value multiplied by " $a$."
This is a vertical stretch, by a factor of $a$.

When $y=f(x)$ is changed to $y=f(b x)$, each point on the original graph has its $x$-value multiplied by the reciprocal of $b$. This is a
horizontal stretch by a factor of $\frac{1}{b}$


When the stretch factor is a number between -1 and 1 , we call it a compression. Otherwise, we call it an expansion.

Examples
a) Identify each change, when $y=f(x)$ is changed to:

$$
\begin{aligned}
& \text { b) Write the new equation that causes } y=f(x) \text { to be stretched as follows: }
\end{aligned}
$$

$$
\text { Vertical stretch, by } \frac{2}{3} \quad \text { Horizontal stretch, by } \frac{5}{2} \quad y \div \frac{1}{2} \quad=f(x)
$$

To Try
The graph of $y=f(x)$ is shown at right. When changed to $y=3 f(x)$,

- identify the transformation
- complete the table and mapping
- sketch the graph of $y=3 f(x)$

Image points

| $x$ | $y$ |
| ---: | :--- |
| -2 | 4 |
| -1 | 1 |
| 0 | 0 |
| 1 | 1 |
| 2 | 4 |

$$
y \times \frac{2}{1}=f(x)
$$

## For next class

Complete: Common Graphs Worksheet

- p 12: 2, 3cd, 4ac, 5, 8, 11
- p 28: 3b, 4b, 5-7, 9, 12
- Also, you can look at these sites
https://www.mathsisfun.com/sets/function-transformations.html
https://www.khanacademy.org/math/algebra2/manipulating-
functions/stretching-functions/e/shifting and reflecting functions
https://www.purplemath.com/modules/fcntranq.htm

Please erase your whiteboard area, and return the whiteboards, erasers, pens and calculators. Thanks!!

