Class_02 Sep 13 - Transformations

Sunday, September 11, 2022 3:48 PM

Tonight's Class:

- Check-in and worksheets
 - Check-in based on email questions
 - o First night Review Worksheet
 - Common Graphs Worksheet
- Translations
- Reflections & Stretches
- Combining transformations

First Night Review Worksheet - #3, 6, 7, 8
Common Graphs Worksheet - base graphs

Last class....

Domain

all allowable x-values. Can't use x-values that "BREAK" the function machine

Range

All y-values

1.1 Horizontal and Vertical Translations

The graph of the base absolute value function is shown at right, and below are three transformed equations.

For each one:

- Sketch its graph on the grid.
- Describe, in words, the transformation that happened.
- Describe the transformation by giving its mapping.
- State the domain and range.

f(x) = |x+2| - 4

PreCalc 12 - Unit 1

Page 4

f(x) = |x| + 3

1-4+21-4 = (-2)-4

1-2+21-4

Often equations are arranged with the "y" term isolated:

$$y = f(x - h) + k$$
Vertical translation

Simplest equation:
$$y = f(x)$$
 $y = f(x-h)$
 $y = f(x-h)$

On page 4, the original function can be written either f(x) = |x| or y = |x|

- When we change the equation, we get different graphs
 γ = | x 4| moves the graph 4 RIGHT
 When x is replaced with x 4, the graph moves 4 right
- y = |x| + 3 can also be written as y 3 = |x|The nice thing about writing it the second way is it's easier to see that when y is replaced with y - 3, the graph moves 3 UP $\,$
- y = |x + 2| 4 causes the graph to move 2 LEFT and also 4 DOWN If we want, we can re-write this as y + 4 = |x + 2|

y = f(x - h) results in a horizontal translation y - h = f(x) OR y = f(x) + h result in a vertical translation

PreCalc 12 - Unit 1 Page 5

TRANSLATIONS - sliding graphs left/right/up/down

Some specific examples:

- when x is replaced with x-8, the graph will move 8 right.
- when x is replaced with x+6, the graph will move 6 left. when y is replaced with y-4, the graph will move 4 up.
- when y is replaced with y+7, the graph will move 7 down.

y=f(x) becomes	y=f(x	-8	,) /
----------------	-------	----	----------

Notice for this one, the "5" was already there in the original equation. The ONLY change, is the graph is shifted right 3.

	Base Function Equation	Transformed Equation	Mapping	Point on original graph	Its image point
	$y = x^2$	$y-4=x^2$ up 4	(×,y)→(×, y+4)	(-3, 9) × 1 ₉	(-3, 13)
,	y = x + 5	y = (x-3)+5 $right 3$	$(x,y) \Rightarrow (x+3,y)$	(2,7)	(5,7)
	$y = \log_5 x$	$y = \log_5(x-2) + 3$ 2 ry + , 3 m	(x1y) → (x+2, y+3)	(25, 2)	(27,5)
	$y=2^{x}$	$y = 2^{-3} + 8$	(x+3, y+8)	$\left(-1,\frac{1}{2}\right)$	(2,8½)
	$y = \frac{2}{x - 4}$	$y = \frac{2}{(x+3)-4} + 6$ lef+3, up 6	(x,y) → (x-3, y+6)	$\left(8, \frac{1}{2}\right)$	(5, 6 kg)
	$x^2 + y^2 = 16$	$(x-5)^2 + (y+3)^2 = 16$ 5 righty 3 down	$(x,y) \rightarrow$ (x+s,y-3)	(-4, 0)	(1,-3)

 $(-1, \frac{1}{2}) \Rightarrow (-1, \frac{1}{3} + \frac{2}{3})$ $= (-1, \frac{1}{6} + \frac{4}{6})$ $= (1, \frac{7}{6})$

PreCalc 12 - Unit 1 Page 6

To Try

Shown is the graph of y = f(x).

a) Identify the transformations that result when the equation is changed to: y-2=f(x+3)

up 2 left 3 y=f(x+3)+2 left 3 b) Make a table of key points on the original graph and the corresponding image points on the image graph.

Bas	Base	
x	y	
-1	-3	
2	а	
3	-3	

c) Sketch the image graph.

$$(x,y) \rightarrow (x-3, y+2)$$

d) State the domain and range of the image graph. (Assume that the line segments stop.)

Example

Given the mapping notation for a transformation, we can write the transformed equation.

Mapping notation Original function New function

$$(x, y) \rightarrow (x-8, y+3)$$
 wp 3
$$y = f(x)$$

$$|eft| 8$$

y = f(x+8) + 3 x = f(x+8)

b)

$$y = f(x-4) - 9$$

 $y + 9 = f(x-4)$

Common Graphs Worksheet, translated graphs

<u>Translations Review</u> - talk with your group, agree on answers.

Given the graph of y = f(x) shown above, match the following four function equations with their graphs (A, B, C or D)

2. y = f(x) - 2 graph:

3. y = f(x+2) graph:

4. y = f(x-2) graph:

Given the graph of y=g(x) shown above, match the following four function equations with their graphs (A, B, C, or D)

- 1. y = g(x) + 3 graph: A
- 2. y = g(x) 3 graph:
- 3. y = g(x+3) graph: \square
- 4. y = g(x-3) graph: 3

Pre-Calc 12 - Unit 1 Page 7 1.2 Reflections and Stretches Reflections Across the x-axis Original Reflected key points 3 0 3 0 Image point for point A: (-4_1-3) Original equation: y = f(x) or y = -f(x)New equation: Mapping: Across the y-axis Reflected Original key points key points ν 3 2 -3 2 ' 1 -1 -3 0 3 Image point for point A: Original equation: New equation: Mapping: Points that do not change under a given transformation are called invariant points Which points are invariant in the reflections above? nem) reflecting acres x-axis, points on it to not move. They are invariant. Loe NOT Change! vary or variable If reflecting acres, y-axis, points on y-axis are invariant. Pre-Calc 12 - Unit 1 Page 8 REFLECTIONS - reflecting graph across either y-axis or x-axis Some specific examples: when x is replaced with -x, the graph will be reflected across the y-axis. when y is replaced with -y, the graph will be reflected across the x-axis. If instead of y = f(x) we have y = -f(x), the graph is reflected across $X \sim X/S$. The graph of the base radical function is shown. $f(x) = \sqrt{x}$ For each transformed equation below Sketch its graph on the grid.

Give its domain and range, using set

Describe the transformation by giving

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Describe, in words, what change

notation.

occurred.

- notation.
- Describe, in words, what change occurred.
- Describe the transformation by giving its mapping.

Stretches

Vertical - all y-values are multiplied by a number, the stretch factor

Carrier	
x	У
-2	-1
-1	٥
0	1
1	0
2	-1

X	3y
-2	-3
-1	0
0	3
1	0
2	-3

Mapping: $(X, y) \rightarrow (X, 3y)$

Horizontal - all x-values are multiplied by a number, the stretch factor

Key points	
х	У
-2	-/
-(0
0	J
1	Ð
2	-1

Image points

Зx	y
-4	4
-2	0
0	1
2	0
4	-1

 $(x_1y) \rightarrow (2x_1y)$

Which points are invariant in the stretches above

horizontal expansion/compression - invariat points are on x-axis

Pre-Calc 12 – Unit 1 Page 10

STRETCHES - horizontal and vertical stretches

When y = f(x) is changed to y = a f(x), each point on the original graph has its y-value multiplied by "a."

When y = f(x) is changed to y = f(bx), each point on the original graph has its x-value multiplied by the <u>reciprocal</u> of b. This is a

horizontal stretch by a factor of $\frac{1}{h}$.

This is a *vertical stretch*, by a factor of a.

When the stretch factor is a number between -1 and 1, we call it a *compression*. Otherwise, we call it an *expansion*.

Examples

a) Identify each change, when y = f(x) is changed to: y = 8f(x) VExp by 8 $y = f(2x) \text{ HComp. } \frac{1}{2}$ $y = \frac{1}{2}f(x)$ $y = \frac{1}{2}f(x)$ y =

Vertical stretch, by $\frac{2}{3}$

Horizontal stretch, by $\frac{5}{2}$

$$y \div \frac{1}{2} = f(x)$$

$$y \times \stackrel{?}{-} = f(x)$$

 $2y = f(x)$

To Try

The graph of y = f(x) is shown at right. When changed to y = 3f(x),

- · identify the transformation
- · complete the table and mapping
- sketch the graph of y = 3f(x)

For next class

Complete: Common Graphs Worksheet

More practice available in textbook

- p 12: 2, 3cd, 4ac, 5, 8, 11
- p 28: 3b, 4b, 5-7, 9, 12
- Also, you can look at these sites
 https://www.mathsisfun.com/sets/function-transformations.html

https://www.khanacademy.org/math/algebra2/manipulating-functions/stretching-functions/e/shifting and reflecting functions

https://www.purplemath.com/modules/fcntrang.htm

Please erase your whiteboard area, and return the whiteboards, erasers, pens and calculators. Thanks!!