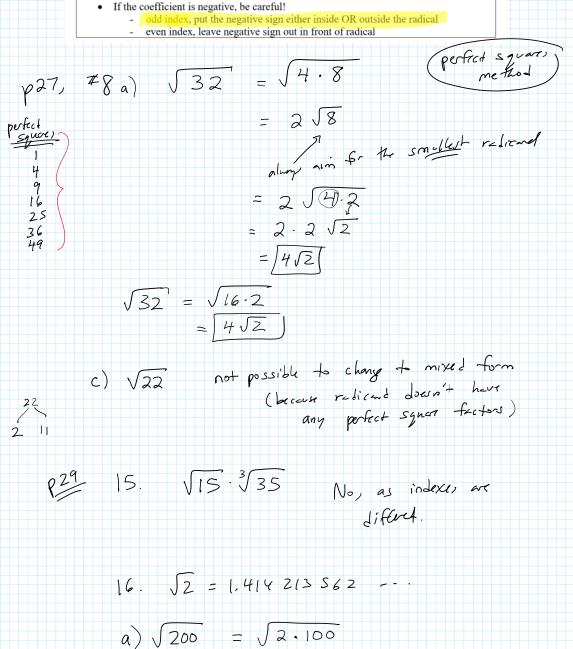
Class_03 Jan 12 - Negative Rational

Exponents

Wednesday, January 11, 2023 5:42 PM


Tonight's Class:

- Recap #2
- Questions from 1.3?
- Working through sections 1.4-1.5
 - Powers with positive fractional exponents (continued)
 - Powers with negative fractional exponents
- Work on practice questions from worktext

From section 1.3

To change a mixed radical to an entire radical

- Identify the index of the radicand, n
- Raise the coefficient of the radical to the nth power, put it inside the radical sign
- Multiply the numbers to create the new radicand
- If the coefficient is negative, be careful!
 - ex, put the negative sign either inside OR outside the radical
 - even index, leave negative sign out in front of radical

$$= \sqrt{2} \sqrt{100}$$

$$= (\sqrt{2})(10)$$

$$= 10 \sqrt{2} = 10 (1.414213862...)$$

$$= 14.14213862...$$

$$p27$$
 7c) $\sqrt{96} = \sqrt{2.2.2.2.2.2.2.3}$
 $= 2.2 \sqrt{2} \sqrt{3.3}$
 $= 4 \sqrt{6}$
 $2 \sqrt{2} \sqrt{2}$
 $2 \sqrt{2}$
 $2 \sqrt{2}$
 $2 \sqrt{2}$
 $2 \sqrt{2}$
 $2 \sqrt{2}$

Example 4

Evaluating Powers with Rational Exponents II

Write each power as a radical, then evaluate the radical.

a)
$$(-8)^{\frac{3}{2}}$$

b)
$$\left(\frac{16}{54}\right)^{\frac{2}{3}}$$

$$= \left(\frac{\sqrt[3]{8}}{\sqrt[3]{27}}\right)^2$$
$$= \left(\frac{2}{3}\right)^2$$

, change the exponent form

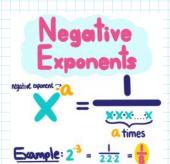
$$32^{1.2}$$
 $1.2 = \frac{2}{10}$

$$= -32$$
$$= -\sqrt{32}$$

Try

- 1.4 questions, WT P 41-45

- Checkpoint, WT p 31-34


Preview 3

1.5 Powers with Negative Rational Exponents

Focus: develop understanding of powers with negative rational exponents

What do we mean by a negative exponent?

$$5^{-4} = \frac{1}{5 \cdot 5 \cdot 5 \cdot 5} = \frac{1}{5^{*}}$$

Negative Exponents

$$a^{-n} = \frac{1}{a^n}$$
For $a \neq 0$

 a^{-n} is a reciprocal of a^n

Example:

$$3^{-2} = \frac{1}{3^2} \qquad \left(\left(\frac{2}{5} \right)^{-6} = \left(\frac$$

$$\left(\frac{2}{5}\right)^{7} = \frac{1}{\left(\frac{2}{5}\right)^{6}}$$

$$= \frac{1}{\left(\frac{2}{5}\right)^{6}}$$

$$= \frac{1}{2} + \frac{2}{5}$$

$$= 1 \times \frac{5}{2} + \frac{5}{2} \times \frac{5}{2}$$

$$= \frac{5}{2} = \left(\frac{5}{2}\right)^{6}$$

$$\begin{array}{c} 5 \cdot \frac{1}{2} \\ = 5 \times \frac{2}{1} \\ = 10 \end{array}$$

Powers with a Negative Integer Exponent and a Rational Base

$$\left(\frac{a}{b}\right)^{-m} = \left(\frac{b}{a}\right)^{m}$$
, where a and b are integers; $a, \neq 0, b \neq 0$

P50

Example 1

Evaluating Powers with Negative Integer

$$=\frac{1}{6^2} = \frac{1}{(-5)^3}$$

$$=\frac{1}{36} = \frac{1}{25}$$

reduce the formible
$$= \left(\frac{10}{8}\right)^{\frac{12}{2}}$$

$$= \left(\frac{5}{4}\right)^{\frac{2}{4}}$$

Try "check for indistanding", p 50

- 1) Do reciprord

Negative Rational Exponents

Definition of
$$a^{-\frac{m}{n}} : \frac{1}{a^{\frac{m}{n}}}$$
 or $\frac{1}{\sqrt[n]{a^m}}$ or $\frac{1}{(\sqrt[n]{a})^m}$

Example 2

Evaluating Powers with Negative Rational Exponents and Integer Bases

- a) Evaluate each power after writing it in the form $\frac{1}{\sqrt[n]{a^m}}$
 - i) $4^{-\frac{3}{2}}$
- ii) $(-1000)^{-\frac{2}{3}}$
- **b)** Evaluate each power after writing it in the form $\frac{1}{(\sqrt[n]{a})^m}$
- ii) $-32^{-\frac{4}{5}}$

a) i)
$$H^{-3/2} = \frac{1}{11^{3/2}}$$

(i)
$$\left(-1000\right)^{-\frac{2}{3}} = \frac{1}{\left(-1000\right)^{\frac{2}{3}}}$$

$$= \frac{1}{(2)^3}$$

$$= \frac{1}{q^{3/2}}$$

$$=\frac{1}{\sqrt{9^{3}}}=\frac{1}{3^{3}}=\frac{1}{27}$$

Example 3

Evaluating Powers with Negative Rational Exponents and Rational Bases

a) Evaluate each power after writing it in the form $\sqrt[n]{\left(\frac{b}{a}\right)^m}$.

i)
$$\left(\frac{1}{4}\right)^{-\frac{3}{2}}$$

ii)
$$\left(-\frac{27}{8}\right)^{-\frac{2}{3}}$$

b) Evaluate each power after writing it in the form $\left(\sqrt[n]{\left(\frac{b}{a}\right)}\right)^m$.

i)
$$\left(\frac{48}{243}\right)$$

i)
$$\left(\frac{48}{243}\right)^{\frac{3}{4}}$$
 ii) $\left(-\frac{27}{125}\right)^{\frac{2}{3}}$

(a) i)
$$\left(\frac{1}{4}\right)^{-3/2} = \left(\frac{4}{1}\right)^{+3/2}$$

$$= \sqrt[2]{4}$$

$$= (2)^3$$

ii)
$$\left(\frac{27}{8}\right)^{-2\frac{7}{3}} = \left(\frac{8}{-27}\right)^{+\frac{2}{3}}$$

$$= \sqrt[3]{\frac{8}{27}}$$

$$= \left(\frac{-2}{3}\right)^2$$

$$= \left(\frac{-2}{3}\right)^2$$

b) i)
$$\left(\frac{48}{243}\right)^{-3/4} = \left(\frac{243}{48}\right)^{+3/4}$$

$$= \left(4\sqrt{\frac{243^{3}}{48^{23}}}\right)^{3}$$

$$=\left(\frac{3}{2}\right)^2$$

$$\begin{array}{ccc}
 & = & \frac{1}{8} \\
 & = & \frac{12.5}{12.5} \\
 & = & \frac{12.5}{2.7} \\
 & = & \frac{3}{2.7} \\
 & = & \frac{3}{2.7} \\
 & = & \frac{3}{3.27} \\
 & = & \frac{3}{3.27} \\
 & = & \frac{-12.5}{3.27} \\
 & = & \frac{-5}{3} \\
 & = & \frac{2.5}{9}
\end{array}$$

For next class

- Complete the "Recap" from tonight!
 - Do all you can without looking at examples/worktext. Then, switch to a different color of pen/pencil and complete the rest of it. This way you can see what you might need to spend more time on.
- Finish worktext questions 1.4 and 1.5. Doing them helps you learn/practice the concepts.
- o Start on the Chapter 1 Hand-in, which is due Thursday, Jan 19