Class_03 Sep 15 - More Transformations
Sunday, September 11, 2022 2:36 PM

Tonight's Class:

- Wifi
- Learning Center \& Career Advisor info
- Check-in
- More about Transformations
- Inverses
- Polynomial Functions

Wifi

SD35-Secured-Students

```
username: your pupil number
password:
```

\qquad
First 2 letters First 4 numbers of your of your first name pupil number

```

\section*{Learning Center Info}


Learning Support Team
 nvonkesd35.bc.ca




\section*{Career Advisor}

Leyla Baluoch, at school on Wednesdays, 9-4:30
https://lec.sd35.bc.ca/


\section*{Book an LEC Career Advisor}
appointment with Leyla Balouch

\section*{Check-in}
-fill in the table in your notes, page 12 -compare your answers with someone else

\subsection*{1.3 Combining Transformations}


\section*{STRETCHES - horizontal and vertical stretches}

When \(y=f(x)\) is changed to \(y=a f(x)\), each point on the original graph has its \(y\)-value multiplied by " \(a\)."
This is a vertical stretch, by a factor of \(a\).


When \(y=f(x)\) is changed to \(y=f(b x)\), each point on the original graph has its \(x\)-value multiplied by the reciprocal of \(b\). This is a
horizontal stretch by a factor of \(\frac{1}{b}\).
When the stretch factor is a number between -1 and 1 , we call it a compression. Otherwise, we call it an expansion.

\section*{Examples}
a) Identify each change, when \(y=f(x)\) is changed to:
b) Write the new equation that cause \(y=f(x)\) o be stretched as follows:
\[
\begin{aligned}
& \text { Horizontal expansion by } \frac{5}{2} \\
& y=f\left(\frac{2}{5} x\right)
\end{aligned}
\]


To Try
The graph of \(y=f(x)\) is shown at right. When changed to \(y=3 f(x)\),
identify the transformation \(V E, 3\)
\(v^{\sigma}\) complete the table and mapping
- sketch the graph of \(y=3 f(x)\)

Image points
\begin{tabular}{|c|l|}
\hline\(x\) & \(y\) \\
\hline \(\mathbf{- 2}\) & \(\mathbf{4}\) \\
\(\mathbf{- 1}\) & \(\mathbf{1}\) \\
\(\mathbf{0}\) & 0 \\
\(\mathbf{1}\) & 1 \\
2 & \(\mathbf{1}\) \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|c|c|}
\hline\(x\) & \(3 y\) \\
\hline-2 & 12 \\
-1 & 3 \\
0 & 0 \\
1 & 3 \\
2 & 12 \\
\hline
\end{tabular}

\((x, y) \rightarrow(x, 3 y)\)

Pre-Calc 12 - Unit 1
Page 11
To Try
The graph of \(y=f(x)\) is shown at right. When changed to \(y=f\left(\frac{1}{2} x\right)\),
- identify the transformation \(H E\) by 2
- complete the table and mapping
- sketch the graph of
\[
\begin{aligned}
y=f\left(\frac{1}{2} x\right) & \text { Image points } \\
& \left.\begin{array}{|c|c|}
\hline \boldsymbol{x} & \boldsymbol{y} \\
\hline \mathbf{0} & \mathbf{- 5} \\
\mathbf{1} & 0 \\
3 & 4 \\
\mathbf{5} & 0 \\
\mathbf{6} & \mathbf{- 5} \\
& \begin{array}{|c|c|}
\hline 2 x & \boldsymbol{y} \\
\hline 0 & -5 \\
2 & 0 \\
6 & 4 \\
10 & 0 \\
12 & -5 \\
\hline
\end{array}
\end{array} . \begin{array}{|c|c|}
\hline
\end{array} \right\rvert\,
\end{aligned}
\]

\((x, y) \rightarrow(2 x, y)\)

\section*{To Try}
\[
\text { or: } V C \text { by }-1 / 2
\]

The graph of \(y=f(x)\) is shown at right. When changed to \(y=-\frac{1}{2} f(x)\),
- identify the transformation \(V C\) by \(1 / 2\), and reflect across \(x\)-axis
- complete the table and mapping
- sketch the graph of \(y=-\frac{1}{2} f(x)\)
\begin{tabular}{|c|c|}
\hline\(x\) & \(y\) \\
\hline 0 & -5 \\
1 & 0 \\
3 & 4 \\
5 & 0 \\
6 & -5 \\
\hline
\end{tabular}

Image points
\begin{tabular}{|c|c|}
\hline\(x\) & \(-1 / 2 y\) \\
\hline 0 & \(5 z\) \\
1 & 0 \\
3 & -2 \\
5 & 0 \\
6 & \(5 / 2\) \\
\hline
\end{tabular}

\((x, y) \rightarrow \quad\left(x,-\frac{1}{2} y\right)\)

Textbook p 28: 3b, 4b, 5-7, 9, 12

\subsection*{1.3 Combining Transformations}

Summary of Transformations. Original Equation, \(y=f(x)\)
Translations
\begin{tabular}{|c|l|l|}
\hline & Graph moves... & Mapping \\
\hline\(y+4=f(x)\) & & \((x, y) \rightarrow\) \\
\hline\(y-5=f(x)\) & & \\
\hline\(y=f(x+2)\) & & \\
\hline\(y=f(x-6)\) & & \\
\hline
\end{tabular}

Stretches
\begin{tabular}{|c|l|l|}
\hline & Graph is stretched... & Mapping \\
\hline\(y=5 f(x)\) & & \\
\hline\(\frac{3}{2} y=f(x)\) & & \\
\hline\(y=f(4 x)\) & & \\
\hline\(y=f\left(\frac{1}{3} x\right)\) & & \\
\hline
\end{tabular}

Reflections
\begin{tabular}{|c|l|l|}
\hline & Reflects across... & Mapping \\
\hline\(y=-f(x)\) & & \\
\hline\(y=f(-x)\) & & \\
\hline
\end{tabular}
\(y=a f(b(x-h))+k=\underbrace{\substack{\text { Horizontal } \\ \text { translation }}}_{\substack{\text { Hertical stretch, } \\ \text { factor } a \\ \text { factor } 1 / b}}\)

If more than one transformation is applied to a graph, does the order in which the transformations are done change the final graph?

\section*{\(y=f(x)\) is shown on the grid}
- Reflect across the \(x\)-axis and sketch the result.
- Take that graph and translate it 4 units up to get your FINAL graph
\begin{tabular}{l|l|}
\multicolumn{1}{c}{ Original } & \multicolumn{2}{c}{ Reflected } \\
\begin{tabular}{|r|r|}
\hline\(x\) & \(y\) \\
\hline-4 & 4 \\
\hline 0 & 6 \\
\hline 2 & 2 \\
\hline 4 & 2 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|l|l|}
\hline & \\
\hline
\end{tabular}
\end{tabular}

FINAL

\(y=f(x)\) is shown on the grid
- Translate 4 units up and sketch the result
- Take that graph and reflect it across the \(x\)-axis to get your FINAL graph
\begin{tabular}{l|l|}
\multicolumn{1}{c}{ Original } & \multicolumn{2}{c}{ Translated } \\
\begin{tabular}{|c|c|c|}
\hline\(x\) & \(y\) \\
\hline-4 & 4 \\
\hline 0 & 6 \\
\hline 2 & 2 \\
\hline 4 & 2 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|l|l|l|}
\hline & \\
\hline & \\
\hline & \\
\hline & & \\
\hline & \\
\hline
\end{tabular}
\end{tabular}


Conclusions: Yes, it makes a difference. The order in which we do a reflection and a translation changes the final result.

\section*{\(y=f(x)\) is shown on the grid}
- Reflect across the \(x\)-axis and sketch the result.
- Take that graph and translate it 4 units up to get your FINAL graph
\begin{tabular}{l|l|}
\multicolumn{1}{l}{ Original } & \multicolumn{2}{c}{ Reflected } \\
\begin{tabular}{|c|c|c|}
\hline\(x\) & \(y\) \\
\hline-4 & 4 \\
\hline 0 & 6 \\
\hline 2 & 2 \\
\hline 4 & 2 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|c|c|}
\hline\(x\) & \(-y\) \\
\hline-4 & -4 \\
\hline 0 & -6 \\
\hline 2 & -2 \\
\hline 4 & -2 \\
\hline
\end{tabular}
\end{tabular}

FINAL
\begin{tabular}{|c|c|}
\hline\(x\) & \(-y+4\) \\
\hline-4 & 0 \\
\hline 0 & -2 \\
\hline 2 & 2 \\
\hline 4 & 2 \\
\hline
\end{tabular}

\[
(x, y) \rightarrow(x,-y+4)
\]
\(y=f(x)\) is shown on the grid
- Translate 4 units up and sketch the result
- Take that graph and reflect it across the \(x\)-axis to get your FINAL graph
\begin{tabular}{l|l|l|}
\multicolumn{2}{c}{ Original } & \multicolumn{2}{c}{ Translated } \\
\begin{tabular}{|c|c|c|}
\hline\(x\) & \(y\) \\
\hline-4 & 4 \\
\hline 0 & 6 \\
\hline 2 & 2 \\
\hline 4 & 2 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|c|c|}
\hline\(x\) & \(y+4\) \\
\hline-4 & 8 \\
\hline 0 & 10 \\
\hline 2 & 6 \\
\hline 4 & 6 \\
\hline
\end{tabular}
\end{tabular}

FINAL
\begin{tabular}{|c|c|}
\hline\(x\) & \(-(y+4)\) \\
\hline-4 & -8 \\
\hline 0 & -10 \\
\hline 2 & -6 \\
\hline 4 & -6 \\
\hline
\end{tabular}
\[
\begin{aligned}
(x, y) \rightarrow & (x,-(y+4)) \\
& (x, \text { simplifying }: \\
(x, y) \rightarrow & (x,-y-4)
\end{aligned}
\] nusformations are done change the final graph?

If they are both acting on the some variable.
\begin{tabular}{c} 
Apply transformations in this order, to get the final graph \\
(i) all \(\begin{array}{c}\text { reflections } \\
\text { Strotiche }\end{array}\) \\
\hline
\end{tabular}
1) all reflections strotiche, math maRS
2) all trmsletions AFTER \(\qquad\) addj/sustratis

add/sustants

SFACTOR first!!
\[
\text { b) } \begin{aligned}
y & =2 f(\underbrace{3 x-6})+5 \\
y & =2 f[3(x-2)]+5
\end{aligned}
\]
\[
(x, y) \rightarrow(2 x+3,-4 y+6)
\]

If there's a If theretch and trizontel \(\}\)
\[
(x, y) \rightarrow\left(\frac{1}{3} x+2,2 y+5\right)
\]

Example
Identify the transformations that need to happen, to change the graph of \(y=f(x)\) on the left to the graph shown at right. Determine the equation of the graph at right.


Pre-Calc 12 - Unit 1

Combining Transformations - Radicals
The changes we have discussed work with any function. Here are some Tpestions to try, relating to the base radical function \(y=\sqrt{x}\).
1) List the transformations that occur when the base radical function is changed to:
\[
y+9=\frac{1}{2} \sqrt{-5 x-12} . \text { Give the } \mathrm{r}
\]
\[
y+9=\frac{1}{2} \sqrt{-3(x+4)}
\]
\[
\begin{array}{ll}
V C \frac{1}{2} \\
\operatorname{dom} 9 \\
\text { left } 4 \\
\mathrm{HC}-1 / 3 & (x, y) \rightarrow\left(-\frac{1}{3} x-4, \frac{1}{2} y-9\right)
\end{array}
\]

3) Complete the table of values for the base function, \(y=\sqrt{x}\), and for the transformed equation, \(y=-2 \sqrt{x+4}-3\). Give the mapping, and the final graph's domain and range. \((x, y) \rightarrow(x-4,-2 y-3))\)
\(y=\sqrt{x} \quad\) VE by \(-2,4\) left, dom 3


\subsection*{1.4 Inverses}

\section*{Inverse Operations}


The operation that reverses the effect of another operation. Examples of inverse operations?
adding/subtracting
multi/ divide
squer-not / squaring
Inverse of a Relation
The inverse of a relation is found by interchanging the \(x\)-coordinates and \(y\)-coordinates of each of the ordered pairs in the relation. Each ordered pair in the relation, \((x, y)\), is changed to the ordered pair \((y, x)\) to form a point on the inverse of the relation.

Example For the relation \(\{(0,0)(1,1)(2,4)(3,9)\}\), what ordered pairs form inverse



Pre-Calc 12 - Unit 1 Page 16

\section*{Example}
a) Complete the table below for the equation \(f(x)=2 x+3\). Plot the points on the grid and connect them with a line segment.
b) Complete the table for the inverse of \(f(x)\). Plot these new points on the same grid and connect them with a line segment.

c) Use the graphs to complete the table below.
\begin{tabular}{|c|c|c|}
\hline & Original function & Inverse \\
\hline domain & \[
\{x \mid-4 \leq x \leq 0, x \in \mathbb{R}\}
\] & \(\{x \mid-5 \leq x \leq 3, x \in \mathbb{R}\}\) \\
\hline range & \(\{y \mid-5 \leqslant y \leqslant 3, y \in \mathbb{R}\}\) & \(\{y)-4 \leq y \leq 0, y \in \mathbb{R}\}\) \\
\hline \(x\)-intercept & Using the equation \(y=2 x+3\)
\[
\begin{array}{lr}
\text { let } y=0, & 0 \\
\text { l } y=2 x+3 \\
x=-3 / 2 & -3 \\
(-2, n) & -3
\end{array}
\] & \((3,0)\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Let \(y=0\), & \(0=2 x+3\) \\
\(x=-3 / 2\) \\
\((-3 / 2,0)\) & \(\frac{-3}{2}=\frac{2 x}{4}\) \\
\(y\)-intercept & \((0,3)\) & \((3,0)\) \\
& \((0,-3 / 2)\) \\
\hline
\end{tabular}

Worksheet - each person will receive a copy to fill in. (back of the worksheet done earlier)
Compare/discuss with others in your group.

\section*{INVERSES}

Consider the graph of the relation shown.
a) Sketch the graph of the inverse relation.
b) State the domain, range and intercepts of the relation and its inverse
c) Determine whether the relation and its inverse are functions.
d) State the coordinates of any invariant points.

\begin{tabular}{|l|l|l|}
\hline & Original Relation & Inverse Relation \\
\hline Domain & & \\
\hline Range & & \\
\hline\(x\)-intercept & & \\
\hline\(y\)-intercept & & \\
\hline Is it a function? & & \\
\hline invariant points & \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}

\section*{C 03 INVERSES}

Consider the graph of the relation shown.
a) Sketch the graph of the inverse relation.
b) State the domain, range and intercepts of the relation and its inverse.
c) Determine whether the relation and its inverse are functions.
d) State the coordinates of any invariant points.
\begin{tabular}{c|cc|c}
\(x\) & \(y\) & \(\quad\) ir.jerse \\
\hline-6 & 0 & & 0 \\
-4 & 4 & & -6 \\
0 & 4 & & -4 \\
2 & 2 & & 0 \\
6 & 2 & 2 & 2 \\
& 2 & 6
\end{tabular}

\begin{tabular}{|l|c|c|}
\hline & Original Relation & Inverse Relation \\
\hline Domain & \(\{x \mid-6 \leq x \leq 6, x \in \mathbb{R}\}\) & \(\{x \mid 0 \leq x \leq 4, x \in \mathbb{R}\}\) \\
\hline Range & \(\{y \mid 0 \leq y \leq 4, y \in \mathbb{R}\}\) & \(\{y \mid-6 \leq y \leq 6, y \in \mathbb{R}\}\) \\
\hline\(x\)-intercept & \((-6,0)\) & \((4,0)\) \\
\hline\(y\)-intercept & \((0,4)\) & \((0,-6)\) \\
\hline Is it a function? & \(y \in s\) & No \\
\hline invariant points & \multicolumn{2}{|c|}{\((2,2)\)} \\
\hline
\end{tabular}

1) trade \(x\) 's and \(y\) 's in the equation
2) Solve that new equation, isolating the " \(y\) " term

Solve:
\[
\begin{aligned}
& \frac{x-3}{2}=\frac{z y}{2} \\
& \frac{x-3}{2}=y
\end{aligned}
\]
notation for inverse
\[
y=\frac{x-3}{2}
\]
\[
f^{-1}(x)=\frac{x-3}{2}
\]
\(f\) ines of \(x\)

Example
Find the equation of the inverse for \(f(x)=(2 x-1)^{2}+4\).
\[
y=(2 x-1)^{2}+4
\]
1) trade:
2) Solve for \(y\) : \(\pm \sqrt{x-4}=\sqrt{(2 y-1)^{2}}\)

a functor n
\[
y=\frac{ \pm \sqrt{x-4}+1}{2} \text { OR } y=\frac{1 \pm \sqrt{x-4}}{2}
\]

We do NOT use \(f^{-1}(x)\) notation this time, because the trues is NOT a function.

Why do we put in the \(\pm\) ?
We need it when solving an equation by square-rooting, otherwise we wouldn't get all the solutions:
\[
\begin{gathered}
\sqrt{x^{2}}=\sqrt[ \pm]{25} \\
x= \pm 5
\end{gathered}
\]
\[
\begin{aligned}
& x=5 \\
& x=-5
\end{aligned}
\]

Pre-Calc 12 - Unit 1
Page 18
Example Find the equation of the inverse for \(f(x)=\sqrt{4 x-5}\).
1) trad
\((x)^{2}=(\sqrt{4 y-5})^{2}\)
2) solve
\[
\left.\begin{array}{rl}
x^{2} & =4 y-5 \\
+5 \\
+5
\end{array}\right)
\]
\[
\begin{gathered}
y=\frac{x^{2}+5}{4} \\
f^{-1}(x)=\frac{x^{2}+5}{4}
\end{gathered}
\]

Example Find the equation of the inverse for \(f(x)=\frac{8 x+1}{2 x-5}\).
1) trade
\[
x=\frac{8 y+1}{2 y-5}
\]
\[
y=\frac{8 x+1}{2 x-5}
\]
2) solve: \((2 y-5)(x)=\left(\frac{8 y+1}{2 y-5}\right)(2 y-5)\)
\[
(2 y-s)(x)=8 y+1
\]
\[
2 x y-5 x=8 y+1
\]
\[
\begin{aligned}
& -5 x-1=8 y-2 x y \\
& \frac{-5 x-1}{8-2 x}=\frac{y(8-2 x)}{8-2 x} \\
& y=-5 x-1
\end{aligned}
\]
\[
\begin{aligned}
& 2 x y-5 x-1=8 y_{2 x y} \\
& -2 \times y y-5 x \\
& \text { Shown is the graph of } f(x)=(x+3
\end{aligned}
\]

Example \({ }^{-2 \times / 8}\) Shown is the graph of \(f(x)=(x+2)^{2}\).
a) Graph the inverse of \(f(x)\) on the

b) How can we restrict the domain of
\(f(x)\) so that the inverse graph is a
function?

\section*{For next class}

Due: Chapter 1 Hand-in due Tuesday, Sep 20
Prepare for Chapter 1 Test on Tuesday, Sep 20
Make sure you understand how to do all questions on it.
Complete the assignment, then check your work against the posted solutions.

Additional review worksheets (with solutions) are posted on the class website.

\section*{More Chapter 1 Practice available in textbook}
- (1.1) p 12: 2, 3cd, 4ac, 5, 8, 11
- (1.2) p 28: 3b, 4b, 5-7, 9, 12
- (1.3) p 38: 4, 5a, 6, 7abcd, 8, 9ce, 10ab
- (1.4) p 51: 1b, 2a, 3ac, 5ae, 8b, 12a```

