Class_04 Jan 17 - Order of Operations and Exponent Laws

Tonight's Class:

- Recap #3
- Any questions from 1.4 or 1.5?
- Working through section 1.6
 - Order of operations
 - Exponent Laws
- Work on practice questions from worktext

Preview 4

1.6 Order of Operations and Exponent Laws

Focus: apply order of operations and exponent laws to • evaluate numerical expressions

• simplify algebraic expressions

Order of Operations BEDMAS		
E	Exponents, a ⁿ	
D	Division or Multiplication	
M	(Left to right)	
A	Addition or Subtraction	
S	(Left to Right)	

Exponent Rules for $a \neq 0, b \neq 0$			
Multiplication Property/ Product Rule	$a^m \cdot a^n = a^{m+n}$		
Division Property/Quotient Rule	$\frac{a^m}{a^n} = a^{m-n}$		
Power of a Power	$\left(a^{m}\right)^{n}=a^{m\cdot n}$		
Power of a Product	$\left(ab\right)^{m}=a^{m}b^{m}$		
Power of a Fraction	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$		
Zero Exponent	$a^0 = 1$		
Negative Exponent	$a^{-n} = \frac{1}{a^n}, \frac{1}{a^{-n}} = a^n, \left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$		
Fractional Exponent	$a^{1/n} = \sqrt[n]{a}, \qquad a^{m/n} = \sqrt[n]{a^m} \text{ or } \left(\sqrt[n]{a}\right)^m$		

Unit 1 - Powers and Radicals Page 4

· • 1

^

- - -

Unit 1 - Powers and Radicals Page 6

Simplifying Algebraic Expressions Work text examples, p 67

Example 4

Applying Rational Exponents

The height, *h* metres, of a certain species of fir tree can be estimated from the formula $h = 35d^{\frac{5}{3}}$, where *d* metres is the diameter of the tree at its base.

b) A lumberjack climbs to the top of a fir tree and estimates that the tree is 52.5 m high. Determine the diameter of the tree at its base. Give the answer to 1 decimal place.

For next class

- Complete the "Recap" from tonight!
- Finish worktext questions for all of Chapter 1
- Complete the Chapter 1 Hand-in, due next class
- Prepare for the Chapter 1 Test, next class
 - 4 multiple-choice questions
 - 9 written questions
 - Out of 20 marks total
 - You will be permitted to use the Exponent Rules Foldable during the test