Class_04 Jan 17 - Order of Operations and Exponent Laws

Tonight's Class:

- Recap \#3
- Any questions from 1.4 or 1.5 ?
- Working through section 1.6
- Order of operations
- Exponent Laws
- Work on practice questions from worktext

$$
\begin{aligned}
& \left.P^{46} b\right)\left(\frac{1}{32}\right)^{0,6}-\left(\frac{9}{25}\right)^{(3 / 2)}+\sqrt[3]{\frac{8}{27}} \\
& =\left(\frac{1}{32}\right)^{\frac{6: 2}{10 \div 2}}-\left(\sqrt{\frac{9}{25}}\right)^{3} \\
& +\frac{2}{3} \\
& =\left(\frac{1}{32}\right)^{3 / 5}-\left(\frac{3}{5}\right)^{3}+\frac{2}{3} \\
& =\left(\sqrt[5]{\frac{1}{32}}\right)^{3}-\left(\frac{27}{125}\right)+\frac{2}{3} \\
& =\left(\frac{1}{2}\right)^{3}-\frac{27}{125}+\frac{2}{3} \\
& \left.=\frac{1}{8} \cdot\left(\frac{125 \times 3}{125 \times 3}\right)-\frac{27}{125} \cdot\left(\frac{8 \times 3}{8 \times 3}\right)+\frac{2(1000)}{3(1000)}=3000\right) \\
& =\frac{375}{3000}-\frac{648}{3000}+\frac{2000}{3000} \\
& =\frac{1727}{3000}
\end{aligned}
$$

p59
a) $3^{x}>1$

$3^{0}=1$
$\left.3^{-1}=\frac{1}{3}\right\}$ expresctre,
$3^{-2}=\frac{1}{3^{2}} \int$ nesit is frectom <1
86
21) $\quad C(t)=A(2)^{-}$ $\prod_{\text {amont ing }}$
a)

$$
\begin{aligned}
& \frac{50}{100}=\frac{100}{100}(2)^{-t / 5} \\
& \frac{1}{2}=(2)^{-t / 5} \\
& 2^{-1}=2^{-t / 5}
\end{aligned}
$$

$$
\text { this mems } 5 \times-1=-\frac{t}{5} \times 5
$$

$$
\frac{-5}{-1}=\frac{-t}{-1}
$$

$$
t=5 \text { hours }
$$

$$
5=t
$$

p58 \#14
c)

$$
\begin{aligned}
&-\left(\frac{243}{32}\right)^{-0.8}=-\left(\frac{32}{243}\right)^{+0.8} \\
&=-\left(\frac{32}{243}\right)^{4 / 5} \\
& \sqrt{32}^{4}
\end{aligned}
$$

$$
\begin{aligned}
0.8 & =\frac{8}{10} \\
& =\frac{4}{5}
\end{aligned}
$$

$$
\begin{aligned}
& =-\sqrt[5]{\frac{32}{243}}{ }^{4} \\
& =-\left(\frac{2}{3}\right)^{4} \\
& =-\frac{16}{81} \\
9)-\left(\frac{81}{10000}\right)^{-0.25} & =-\left(\frac{10000}{81}\right)^{+0.25}=\frac{10.25}{1000} \\
& =-\left(\frac{25}{81}\right)^{1 / 4} \\
& =-\frac{10000}{81} \\
& =-\frac{10}{3}
\end{aligned}
$$

Preview 4

1.6 Order of Operations and Exponent Laws

Focus: apply order of operations and exponent laws to

- evaluate numerical expressions
- simplify algebraic expressions

Order of Operations

BEDMAS

B	Brackets, ()
E	Exponents, a^{n}
D	Division or Multiplication
M	(Left to right)
A	Addition or Subtraction
S	(Left to Right)

Exponent Rules for $a \neq 0, b \neq 0$	
Multiplication Property/ Product Rule	$a^{m} \cdot a^{n}=a^{m+n}$
Division Property/Quotient Rule	$\frac{a^{m}}{a^{n}}=a^{m-n}$
Power of a Power	$\left(a^{m}\right)^{n}=a^{m \cdot n}$
Power of a Product	$(a b)^{m}=a^{m} b^{m}$
Power of a Fraction	$\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$
Zero Exponent	$a^{0}=1$
Negative Exponent	$a^{-n}=\frac{1}{a^{n}}, \quad \frac{1}{a^{-n}}=a^{n}, \quad\left(\frac{a}{b}\right)^{-n}=\left(\frac{b}{a}\right)^{n}$
Fractional Exponent	$a^{1 / n}=\sqrt[n]{a}, \quad a^{m / n}=\sqrt[n]{\left(a^{m}\right)}$ or $(\sqrt[n]{a})^{m}$

Simplifying Numerical Expressions

Work text examples, pp 64-65

Example 1 Simplifying Numerical Expressions with Rational Bases

Write each expression as a single power, then evaluate.
Write each answer as a fraction in lowest terms.
a) $1.2^{-4} \cdot 1.2^{7}$
b) $\left[\left(\frac{4}{5}\right)^{3}\right]^{-2} \cdot\left[\left(\frac{(}{5}\right)^{2}\right]^{4}$
c) $5\left(\frac{2}{3}\right)^{-4}$
b) $\left[\left(\frac{4}{5}\right)^{3}\right]^{-2}\left[\left(\frac{4}{5}\right)^{2}\right]^{4}$
a) $1.2^{-4} \cdot 1.2^{7}=1.2^{-4+7} \quad \frac{10}{10}(1.2)=\frac{12}{10}$
$=1.2^{3}$
$=\left(\frac{12}{10}\right)^{3}$
$=\left(\frac{6}{5}\right)^{3}$
$=\left(\frac{4}{5}\right)^{-6}\left(\frac{4}{5}\right)^{8}$
$=\left(\frac{4}{6}\right)^{-6+8}$

$$
\begin{aligned}
& =\left(\frac{4}{5}\right)^{-6+8} \\
& =\left(\frac{4}{5}\right)^{2}=\frac{16}{25}
\end{aligned}
$$

$$
\begin{aligned}
& \gg u^{\prime \prime} p-64 \\
&>(a) \quad 2.5^{3} \cdot 2.5^{-5}=(2.5)^{16} \\
& \begin{aligned}
& 2.5=\frac{25 \div 5}{10} \div 5 \\
&=\frac{5}{2}
\end{aligned}=\left(\frac{5}{2}\right)^{-2} \\
&=\left(\frac{2}{5}\right)^{+2} \\
&=\frac{4}{25}
\end{aligned}
$$

C)

$$
\begin{aligned}
5\left(\frac{2}{3}\right) & =5\left(\frac{3}{2}\right) \\
& =5\left(\frac{3^{4}}{2^{4}}\right) \\
& =\frac{5}{1}\left(\frac{81}{16}\right) \\
& =\frac{405}{16}
\end{aligned}
$$

Example 2
Simplifying Numerical Expressions with Rational Exponents

Write each expression as a single power, then evaluate. Write each answer as a fraction or a whole number.
a) $\left(\frac{12^{\frac{7}{8}}}{12^{\frac{1}{8}} \cdot 12^{\frac{1}{4}}}\right)^{4}$
b) $\left(8^{-\frac{1}{3}}+8^{\frac{2}{3}}\right)^{2}$
c) $\left(3^{-\frac{1}{2}} \cdot 4^{\frac{2}{3}}\right)^{6}$
d) $2^{\frac{1}{4}} \cdot 128^{\frac{1}{4}}$
simplistic cites first
a) $\begin{aligned}\left(\frac{12^{7 / 8}}{12^{1 / 8} \cdot 12^{1 / 4}}\right)^{4} & =\left(\frac{12^{1 / 8}}{12^{1 / 8+1 / 42}}\right)^{4} \\ & =\left(\frac{12^{7 / 8}}{12^{1 / t^{2 / 8}}}\right)^{4}\end{aligned}$

$$
\begin{aligned}
& =\left(12^{7 / 8-3 / 8}\right)^{4} \\
& =\left(12^{4 / 8}\right)^{4} \\
& =\left(12^{1 / 8}\right) \\
& =12^{2}
\end{aligned}
$$

$$
\left.=\left(\frac{12^{7 / 8}}{12^{3 / 8}}\right)^{4}\right)^{1 \alpha}=12^{2}
$$

b)

$$
\begin{aligned}
\left(8^{-1 / 3}+8^{2 / 3}\right)^{2} & =\left(\frac{1}{8^{1 / 3}}+\sqrt[3]{8^{2}}\right)^{2} \\
& =\left(\frac{1}{\sqrt[3]{8}}+4\right)^{2} \\
& =\left(\frac{1}{2}+\frac{\left.4 \cdot \frac{2}{2}\right)^{2}}{2} \quad \begin{array}{l}
\left(\frac{1}{2}+4\right)^{2} \\
\end{array}\right. \\
& =\left(\frac{1}{2}+\frac{8}{2}\right)^{2} \\
& =\left(\frac{9}{2}\right)^{2} \\
& \left.=\frac{(1}{2}+4\right)\left(\frac{1}{2}+4\right) \\
& =\frac{1}{4}+2+2+16 \\
& =\frac{1}{4}+20 \\
& =20 \\
& =\frac{81}{4}
\end{aligned}
$$

Dc) $\left(3^{-1 / 2} \cdot 4^{2 / 3}\right)^{6}$ poiret pour kw

$$
\begin{aligned}
& =\left(3^{-1 / 2}\right)^{6} \cdot\left(4^{2 / 3}\right)^{6} \\
& =3^{-6 / 2} \cdot 4^{12 / 3} \\
& =3^{-3} \cdot 4^{4} \\
& =\frac{1}{3^{3}} \cdot 256 \\
& =\frac{1}{27} \rightarrow \frac{256}{1}=\frac{256}{27}
\end{aligned}
$$

Simplify each expression and write with positive exponents.
a) $3\left(2 x^{3} y^{-4}\right)\left(5 x^{2} y^{8}\right)$
b) $\frac{\left(4 a^{2} b^{-3}\right)^{2}}{3 a^{\frac{1}{2}} b^{-5}}$
c) $\left(2 x^{2}+3 y\right)\left(5 x^{2}-2 y\right)$

$$
\begin{aligned}
& \text { a) } 3\left(2 x^{3} y^{-4}\right)\left(5 x^{2} y^{8}\right) \\
& \begin{aligned}
& \downarrow 6 x^{3} x^{2} y^{-4} y^{8} \\
= & 3.2 .5 x^{5}
\end{aligned} \\
& =30 x^{5} y^{4} \\
& \text { b) } \frac{\left(4 a^{2} b^{-3}\right)^{2}}{3 a^{1 / 2} b^{-5}}=\frac{16 a^{4} b^{-6}}{3 a^{1 / 2} b^{-5}} \\
& =\frac{16 a^{4 r^{-1 / 2}}}{3} b^{-6-(-5)} \\
& \frac{2}{2}(4)-\frac{1}{2} \\
& =\frac{8}{2}-1 / 2 \\
& =7 / 2 \\
& =\frac{16 a^{7 / 2} b^{-1}}{3} \\
& \text { c) }\left(2 x^{2}+3 y\right)\left(5 x^{2}-2 y\right) \\
& =\frac{16 a^{7 / 2}}{3 b} \frac{16 \sqrt{a^{7}}}{3 b} \\
& =10 x^{4}-4 x^{2} y+15 x^{2} y-6 y^{2} \\
& =10 x^{4}+11 x^{2} y-6 y^{2}
\end{aligned}
$$

* mistake in answer, for $3 c$

Check Your Understanding
Answers:
3. a) $\frac{60 y^{8}}{x}$
b) $\frac{1}{2 y^{3}}$
c) $18 x^{4}+3 x y^{2}-10 y^{4}$
should be $18 x^{2}+3 x y^{2}-10 y^{4}$

Example 4
Applying Rational Exponents
The height, h metres, of a certain species of fir tree can be estimated from the formula $h=35 d^{\frac{2}{3}}$, where d metres is the diameter of the tree at its base.
a) The base of a fir tree has diameter 4.1 m .

Determine the approximate height of the tree.
Give the answer to the nearest metre.

$$
\begin{aligned}
h & =35 d^{2 / 3} \\
& =35(4.1)^{2 / 3} \quad \text { use calculator } \\
& =3.5(4.1) \wedge(2 / 3) \\
& \doteq 89.658 \rightarrow 90 \mathrm{~m}
\end{aligned}
$$

b) A lumberjack climbs to the top of a fir tree and estimates that the tree is 52.5 m high. Determine the diameter of the tree at its base. Give the answer to 1 decimal place.

$$
\begin{aligned}
& h=3 d^{2 / 3} \\
& \frac{52.5}{35}=\frac{35 d^{2 / 3}}{35} \\
&\left(\frac{525}{35}\right)^{3 / 2}=\left(d^{2 / 3}\right)^{3 / 2} \\
&\left(\frac{525}{35}\right)^{3 / 2}=d \quad d=1.837 \cdots \cdots \\
&\left(\frac{1.8 m}{2}\right.
\end{aligned}
$$

For next class

- Complete the "Recap" from tonight!
- Finish worktext questions for all of Chapter 1
- Complete the Chapter 1 Hand-in, due next class
- Prepare for the Chapter 1 Test, next class

4 multiple-choice questions

- 9 written questions
- Out of 20 marks total
- You will be permitted to use the Exponent Rules Foldable during the test

