Due today

Hand-in Assignment: Chapter 1 Hand-in. Any questions?

Tonight's Class:

- Chapter 1 Test warm-up; Test
- 3.1 Polynomial Characteristics
- 3.2 Remainder Theorem

$$
y=a f(b(x-c))+d
$$

al 4 unis down
6. The key point((-12, 18)) s on the graph of $y=f(x)$. What is its image point under each transformation of the graph of $f(x)$?
a) $y+6=f(x-4)$
b) $y=4 f(3 x)$
c) $y=-2 f(x-6)+4$
(d) $=-2 f\left(-\frac{2}{3} x-6\right)+4$
e) $y+3=-\frac{1}{3} f(2(x+6))$

3 down $\frac{H C^{1 / 2} \text { af } \frac{1}{3} \text {, reflect aces the x-axis }}{\text { VC }}$
$(x, y) \rightarrow\left(\frac{1}{2} x-6,-\frac{1}{3} y-3\right)$

$$
\begin{aligned}
& y=-2 f\left(-\frac{2}{3} x-6\right)+4 \\
& \begin{aligned}
&-2+\left(-\frac{2}{3} x-6\right)+4 \\
& y=-2 f\left(\frac{-2}{3}(x+9)+4^{0}\right)^{-\frac{1}{3}}(\text { something }) \\
&=\frac{-6}{-2 / 3} \\
&=-6 \div \frac{-2}{3}
\end{aligned} \\
& (x, y) \rightarrow\left(-\frac{3}{2} x-9,-2 y+4\right) \\
& \begin{aligned}
(-12,18) & \rightarrow\left[\left(-\frac{3}{2}\right)-(-1)-9,-2(18)+4\right] \\
& =(9,-32)
\end{aligned} \\
& \begin{array}{l}
V E, 2 \\
\text { reflect cos } \left.x-a x_{i}\right)
\end{array} \\
& \text { HE } \frac{3}{2} \text {, reflect } \begin{array}{c}
\text { acosis } \\
y \rightarrow-4 \text { io } \\
y
\end{array} \\
& =-6 \div-\frac{2}{3} \\
& =-\frac{6}{1} \times \frac{3}{-2} \\
& =\frac{-18}{-2}=+9 \\
& \text {. }
\end{aligned}
$$

Chapter 3: Polynomial Functions

3.1 Characteristics of Polynomial Functions
term - a single number (called a constant), a variable, or numbers and variable multiplied together

- a polynomial can just one term, or it can be made up of several terms added/subtracted together
- exponents of polynomial terms must be positive integers (no negative, X^{-2} fractional or decimal exponents) $\quad \sqrt{x}=x^{1 / 2} \quad x^{3 / 4} \longleftarrow x<$ polynomia
- coefficients) f polynomial terms must be real numbers (no square-roots of negative numbers). In this chapter, we will only use coefficients that are integers.
- the degree of a constant is zero, degree of other terms is the exponent if x term
- the degree of a polynomial is found by looking at the degree of each of term and choosing the largest one
- the leading coefficient is the coefficient of the term with highest degree

Any polynomial can be written in the form below:

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{2} x^{2}+a_{1} x^{1}+a_{0}
$$

Polynomial graphs don't all look the same. Here are some examples:

$f(x)=x^{2}+2 x$
$f(x)=x(x+2)$

$$
k(x)=x^{4}-5 x^{2}+4
$$

$$
k(x)=(x-1)(x+1)(x-2)(x+2)
$$

$$
\begin{aligned}
& g(x)=-2 x^{2}+x \\
& g(x)=x(-2 x+1)
\end{aligned}
$$

$I(x)=-\left(x^{4}-5 x^{2}+4\right)$ $1(x)=-(x-1)(x+1)(x-2)(x+2)$

$$
\begin{aligned}
& m(x)=1 / 2\left(x^{5}+4 x^{4}-7 x^{3}-22 x^{2}+24 x\right) \\
& m(x)=1 / 2 x(x-1)(x-2)(x+3)(x+4)
\end{aligned}
$$

$$
h(x)=x^{3}-x
$$

$$
h(x)=x(x-1)(x+1)
$$

$$
j(x)=-x^{3}+2 x^{2}+3 x
$$

$$
n(x)=-1 / 2\left(x^{5}+4 x^{4}-7 x^{3}-22 x^{2}+24 x\right)
$$

$$
i(x)=-x(x-2)(x+1)
$$

$$
n(x)=-1 / 2 x(x-1)(x-2)(x+3)(x+4)
$$

Important Features of Graphs
x-intercept(s)
y-intercept
Domain
Range
Maximum $\} \longrightarrow$ highest or lowest y-value
Direction of opening
End behavior

opens

Minimum $\}$
Direction of opening End behavior

End behavior - Report what the graph does at the extreme left and extreme right of the x-axis.

Activity: Graphs of Polynomial Functions
Let's find some CONNECTIONS between a polynomial's equation and its graph.

Section 3.1 Graphs of Polynomial Functions
Complete the tables to help you compare the graphs of different polynomial functions.

Section 3.1 Graphs of Polynomial Functions
Complete the tables to help you compare the graphs of different polynomial functions.

Try together, TB p 114, \#3 and 4

Check Your Understanding

Practise

1. Identify whether each of the following is a polynomial function. Justify your answers. a) $h(x)=2-\sqrt{x}$
b) $y=3 x+1$
c) $f(x)=3^{x}$
d) $g(x)=3 x^{4}-7$
e) $p(x)=x^{-3}+x^{2}+3 x$
f) $y=-4 x^{3}+2 x+5$
2. What are the degree, type, leading coefficient, and constant term of each polynomial function?
a) $f(x)=-x+3$
b) $y=9 x^{2}$ quartic

(4) $g(x)=3 x^{4}+3 x^{3}$
e) $y=-2 x^{3}-2 x^{3}+9$
f) $h(x)=-6$
3. For each of the following:

- determine whether the graph represents an odd-degree or an even-degree polynomial function
- determine whether the leading coefficient of the corresponding function is positive or negative
- state the number of x-intercepts
- state the domain and range

4. Use the degree and the sign of the leading coefficient of each function to describe the end behaviour of the corresponding graph. State the possible number of x-intercepts and the value of the y-intercept.
a) $f(x)=x^{2}+3 x-1$
b) $g(x)=-4 x^{3}+2 x^{2}-x+5$
c) $h(x)=-7 x^{4}+2 x^{3}-3 x^{2}+6 x+4$
d) $q(x)=x^{5}-3 x^{2}+9 x$
e) $p(x)=4-2 x$
f) $v(x)=-x^{3}+2 x^{4}-4 x^{2}$

You know what seems odd to me? Numbers that aren't divisible by two."

Your Turn

A toaster oven is built in the shape of a rectangular prism. Its volume, V, in cubic inches, is related to the height, h, in inches, of the oven door by the function $V(h)=h^{3}+10 h^{2}+31 h+30$.
a) What is the volume, in cubic inches, of the toaster oven if the oven
door height is 8 in ?
b) What is the height of the oven door for the least toaster oven volume? Explain.

Here's another volume question. Say we know a box is 8 cm wide, 10 cm long, and $\mathbf{2 c m}$ high. What is the volume of the box?

$$
\begin{aligned}
\text { Volume } & =l w h \\
& =(10)(8)(2) \\
& =160 \mathrm{~cm}^{3}
\end{aligned}
$$

What if we know the volume of a box? Can we find the dimensions? In order to do that, we have to factor.......which in a way is like dividing.

Given that the volume of a box is 30 cubic cm , what might the dimensions of the box be? Let's assume that each side length is a whole number.

$$
\begin{aligned}
& 30 \times 1 \times 1 \\
& 3 \times 10 \times 1 \\
& 3 \times 5 \times 2
\end{aligned}
$$

What might the dimensions of a box be, if we know the volume is given by this polynomial?

$$
\begin{aligned}
& V=x^{3}+2 x^{2}-5 x-6 \\
& \text { need to frater it! }
\end{aligned}
$$

\square

To figure this out, we need to know how to FACTOR a CUBIC polynomial.

3.2

The Remainder Theorem

focus on
describing the relationship between polynomial long division
and synthetic division
dividing polynomials by binomials of the form $x-a$ using long division or synthetic division
explaining the relationship between he remander when a polynomial is divided by a binomial of the form $x-\sigma$ and the value of the polynomial at $x=$

Long Division - remember that??

The basic process is shown in the first $\mathbf{5 0}$ seconds of this video:

Long Division Video
Crial monel nemeur
https://www.youtube.com/watch?v=OK0ks0w8Kns

Check: (divisor)(quotion) +remainder

$$
\begin{gathered}
=\text { dividend } \\
(6)(42)+1=253
\end{gathered}
$$

$$
\begin{aligned}
& \text { Bother/ Bins } \\
& \text { dom }
\end{aligned}
$$

Ways to write the result: $253+6=42$, remainder 1	Check:	
$\frac{253}{6}=42$, remainder 1	(Divisor)(Quotient) + Remainder	$=$ Dividend
$\frac{\text { (6)(42) }+1}{6}=42+\left(\frac{1}{6}\right)$		

Using long division to divide a polynomial by a binomial
Divide $x^{3}-12 x^{2}-42$ by $x-3$.

1) Write dividend, $P(x)$, in
descending order (highest desire term first, then going on down)
2) If any degree is missing, include it, with a coefficient of O.

$$
\begin{aligned}
& \frac{x^{2}-9 x-27}{x-3)} \\
& \frac{x^{3}-12 x^{2}+0 x-42}{-\left(x^{3}-3 x^{2}\right) \downarrow} \\
& \frac{-9 x^{2}+0 x}{-\left(-9 x^{2}+27 x\right)} \\
& \frac{-(-27 x x}{-272}+81 \\
& -123
\end{aligned}
$$

Division Statement:
Express the result in the form $\frac{P(x)}{x-a}=Q(x)+\frac{R}{x-a}$
What estrictionslure there on $4 \rightarrow \frac{x^{3}-12 x^{2}-42}{x-3}=x^{2}-9 x-27+\frac{-123}{x-3}$
restriction: $x \neq 3$

$$
\begin{aligned}
P(x) & =(x-3)\left(x^{2}-9 x-27\right)+-123 \\
& =x^{3}-9 x^{2}-27 x-3 x^{2}+27 x+81+-123 \\
& =x^{3}-12 x^{2}-42
\end{aligned}
$$

Division Statement

The result of dividing a polynomial $P(x)$ by a binomial of the form $x-a$ is:
$\frac{P(x)}{x-a}=Q(x)+\frac{R}{x-a}$, where $Q(x)$ is the quotient and R is the remainder.
Check: $\quad P(x)=(x-a) Q(x)+R$
original polynomial $=($ divisor) $(q u o t i e n t)+$ remainder

Divide, using synthetic division $\left(2 x^{3}+3 x^{2}-5 x+2\right) \div(x+3)$

$(x+3)\left(2 x^{2}-3 x+4\right)-10$
$=2 x^{3}-3 x^{2}+4 x+6 x^{2}-9 x+12-10 \quad 2 x^{2}-3 x+4+\frac{-10}{x+3}$
$=2 x^{3}+3 x^{2}-5 x+2$
Find the value of $P(-3)$, for $P(x)=2 x^{3}+3 x^{2}-5 x+2$

Remainder Theorem:

When a polynomial, $P(x)$, is divided by a binomial, $x-a$, the remainder is $P(a)$
If $P(a)=0$, then the binomial $x-a \quad$ is a factor of $P(x)$.
If $P(a) \neq 0$, then the binomial $x-a$ is not a factor of $P(x)$.

Example
a) Use the Remainder Theorem to find the remainder when $P(x)=8 x^{3}+4 x^{2}-19$ is divided
by $x+2$
b) Check your answer by using synthetic division.
c) Use the Remainder Theorem to find the remainder when $P(x)=8 x^{3}+4 x^{2}-19$ is divided by $x-1$.
8. For each dividend, determine the value of k if the remainder is 3 .
a) $\left(x^{3}+4 x^{2}-x+k\right) \div(x-1)$
b) $\left(x^{3}+x^{2}+k x-15\right) \div(x-2)$
c) $\left(x^{3}+k x^{2}+x+5\right) \div(x+2)$
d) $\left(k x^{3}+3 x+1\right) \div(x+2)$

