## Due today

Hand-in Assignment: Chapter 1 Hand-in. Any questions?

## Tonight's Class:

- Chapter 1 Test warm-up; Test
- 3.1 Polynomial Characteristics
- 3.2 Remainder Theorem

Please:

1. Make sure your name is on your Chapter 1 Hand-in, and turn it in.
2. Put away your phone and all materials except for a calculator \& something to write with.
3. On your test, write clearly and show all necessary steps.

When you are finished, please look over your test before handing it in.
4. While other people are still finishing, respect them by being quiet. You can leave the classroom if you wish, but be back in time for the rest of class. Try the "Factoring Practice" worksheet.

CHAPTER

## Polynomial

 FunctionsPolynomial functions can be used to model different real-world applications, from business profit and demand to construction and fabrication design. Many calculators use polynomial approximations to compute function key calculations. For example, the first four terms of the Taylor polynomial approximation for the square root function are $\sqrt{x} \approx 1+\frac{1}{2}(x-1)-\frac{1}{8}(x-1)^{2}+\frac{1}{16}(x-1)^{3}$.

$$
\begin{array}{r}
\text { Pre-Calc } 12-\text { Unit } 1 \\
\text { Page } 19
\end{array}
$$

## Chapter 3: Polynomial Functions

3.1 Characteristics of Polynomial Functions

- term - a single number (called a constant), a variable, or numbers and variables multiplied together
- a polynomial can just one term, or it can be made up of several terms added/subtracted together
- exponents of polynomial terms must be positive integers (no neqnative, fractional or decimal exponents) $\left.2 x^{-1}\right\} x^{(12)}$ not a
- coefficients of polynomial terns must be peal number (no square-roo negative numbers). In this chapter, we wifl only use oefficients that are
integers.
- the degree of a constant is zero, degree of other terms is the exponent of $x$ term desru 12

- the degree of a polynomial is found by looking at the degree of each of term


## $5 x^{4}-7 x^{2}+11 x-3$ degru of thas polynomrul?

Any polynomial can be written in the form below


Polynomial graphs don't all look the same. Here are some examples:



End behavior - Report what the graph does at the extreme left and extreme right of the $x$-axis.


Activity: Graphs of Polynomial Functions
From this, we want to find some connections between key features of a polynomial's equation and its graph.

## Section 3.1 Graphs of Polynomial Functions

Complete the tables to help you compare the graphs of different polynomial functions.

| " | ' |
| :---: | :---: |
| " | ${ }^{\text {w }}$ |


| Set | Function | Sketeth | End Behavior O\# to $\mathrm{O} \#$ | Degree | $\begin{gathered} \text { Leading } \\ \text { Coefficient } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { A } \\ \text { (odd } \\ \text { degrec) } \end{gathered}$ | $\begin{aligned} & \text { Linear } \\ & y=x \end{aligned}$ |  |  |  |  |
|  | $\begin{aligned} & \text { Cubic } \\ & y=x^{3} \end{aligned}$ |  |  |  |  |
|  | $\begin{aligned} & \text { Quintic } \\ & y=x^{5} \end{aligned}$ |  |  |  |  |
|  | $\begin{aligned} & \text { Linear } \\ & y=-x \end{aligned}$ |  |  |  |  |
|  | $\begin{aligned} & \text { Cubic } \\ & y=-2 x^{3} \end{aligned}$ |  |  |  |  |
|  | $\begin{aligned} & \text { Quintic } \\ & \begin{array}{l} y=-2 x^{5} \end{array} \end{aligned}$ |  |  |  |  |
| $\begin{gathered} \mathrm{B} \\ \text { (even } \\ \text { degree) } \end{gathered}$ | Quadratic $y=x^{2}$ |  |  |  |  |
|  | $\begin{aligned} & \text { Quartic } \\ & y=x^{4} \end{aligned}$ |  |  |  |  |
|  | Quadratic $y=-3 x^{2}$ |  |  |  |  |
|  | Quartic $y=-2 x^{4}$ |  |  |  |  |


| Set |  | Function | Degree | $\begin{gathered} \text { Constant } \\ \text { Term } \\ \hline \end{gathered}$ | Value of y-intercept | Number of <br> Intercepts |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\substack{\mathrm{C} \\ \text { (odd } \\ \text { degrec) }}}{ }$ | Lincar | $y=x+1$ |  |  |  |  |
|  | Cubic | $y=x^{3}+4 x^{2}+x-6$ |  |  |  |  |
|  | Cubic | $y=x^{3}-2$ |  |  |  |  |
|  | Quintic | $y=x^{5}+3 x^{4}-5 x^{3}-15 x^{2}+4 x+12$ |  |  |  |  |
|  | Quintic | $y=x^{3}-3$ |  |  |  |  |
| $\begin{gathered} \mathrm{D} \\ \text { (even } \\ \text { degrece } \end{gathered}$ | Quadratic | $y=x^{2}+5 x+6$ |  |  |  |  |
|  | Quadratic | $y=x^{2}+4$ |  |  |  |  |
|  | Quartic | $y=x^{4}+2 x^{3}-7 x^{2}-8 x+7$ |  |  |  |  |
|  | Quartic | $y=x^{4}+2$ |  |  |  |  |

## Section 3.1 Graphs of Polynomial Functions

Complete the tables to help you compare the graphs of different polynomial functions.

| $\begin{aligned} & \text { ODD } \\ & \text { degre } \end{aligned}$ |  | Function | Stacth |  | Degree |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }_{\text {Linear }}^{\substack{\text { Linear } \\ y=x}}$ |  | W 2 TQ1 | 1 | 1 |
|  |  | $\begin{aligned} & \text { abic } \\ & y=x^{\prime} \end{aligned}$ | $\sqrt{ }^{y} \times$ | dQ3 $\uparrow$ Q | 3 | 1 |
|  |  | $\begin{aligned} & \text { Quininicicic } \\ & x^{4} \end{aligned}$ | $\frac{y^{3}}{4}$ | $\mathbb{L}^{3} \uparrow$ Q1 | 5 | 1 |
|  |  |  | $y^{y}$ | $\uparrow Q 2 \downarrow$ Q | 1 | -1 |
|  |  | $\begin{aligned} & \text { Cabie } \\ & y=-2 x^{3} \end{aligned}$ | $\frac{t^{y}}{L}$ | QQ2 QY $^{\text {¢ }}$ | 3 | -2 |
|  |  | $\begin{aligned} & \text { Quintic } \\ & y=-2 x^{s} \end{aligned}$ | $y^{4}$ | TQ2 1 Q 4 | 5 | -2 |
| $\begin{aligned} & \text { EVEN } \\ & \text { degree } \end{aligned}$ |  |  | $1^{4 n}$ | TQ2¢Q। | 2 | 1 |
|  |  | $\begin{aligned} & \text { Quanticicic } \\ & y=x=x^{2} \end{aligned}$ | $\xrightarrow{4 \%}$ | $\uparrow Q 2 \uparrow Q 1$ | 4 | 1 |
|  |  | $\begin{aligned} & \text { Quadratic } \\ & y=-3 x^{2} \end{aligned}$ | $\frac{1}{4}$ | $\downarrow$ Q3 $\downarrow$ Q4 | 2 | -3 |
|  |  | $\begin{array}{\|l\|l} \text { Quaric } \\ y=-2 x^{t} \end{array}$ | $\stackrel{p}{f}$ | $\downarrow Q^{3} \ Q^{4}$ | 4 | -2 |


|  |  |  | namm | Comm | Simer | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% | ${ }^{\text {anam }}$ | $y=x+1$ | 1 | 1 | 1 | 1 |
|  | ${ }^{\text {cout }}$ | $y=x+4 x^{2}+x-6$ | 3 | -6 | - 6 | 3 |
|  |  | ,-x-2 | 3 | -2 | -2 | 1 |
|  |  | $y=0: 3 x^{2}-5 x^{2}-15 x^{2}+4 x+12$ | 5 | 12 | 12 | (5) |
|  | comb | $y=x-3$ | 5 | -3 | -3 | 1 |
| 品 | $\sum_{m=1}^{\infty}$ | $y=x^{2}+5 \times 6$ | 2 | 6 | 6 | 2 |
|  | \% | y=x+4 | 2 | 4 | 4 | 0 |
|  | come |  | 4 | 7 | 7 | 4 |
|  | \%eme | y=x+2 | 4 | 2 | 2 | 0 |


|  | Pre-Calc $12-$ Unit 1 Page 20 |
| :---: | :---: |
| ODD degree |  |
| Leading coefficient positive | Leading coefficient negative |
|  <br> - End behavior $\downarrow Q 3 \uparrow Q 1$ <br> - $y$-intercept constant term <br> - Number of $x$-intercepts I up to at <br> - Domain $x \in \mathbb{R} \quad$ most the degel <br> - Range $y \in \mathbb{R}$ <br> - Maximum/minimum hone |  <br> - End behavior $\uparrow Q 2 \downarrow Q 4$ <br> - $y$-intercept constant term <br> - Number of $x$-intercepts <br> - Domain <br> - Range <br> - Maximum/minimum |
| EVEN degree |  |
| Leading coefficient positive | Leading coefficient negative |
|  <br> - End behavior $\uparrow Q 2 \uparrow Q 1$ <br> - y-intercept constant term <br> - Number of $x$-intercepts O upto <br> - Domain $x \in \mathbb{R}$ the desgee <br> - Range $y \geqslant \min$ <br> - Maximum minimum |  <br> - End behavior $\downarrow$ Q3 $\downarrow$ Q4 <br> - $y$-intercept constant tem <br> - Number of $x$-intercepts <br> - Domain <br> - Range $y \leq \max$ <br> - Maximuniminimum |

## Check Your Understanding

## Practise

1. Identify whether each of the following is a polynomial function. Justify your answers.
a) $h(x)=2-\sqrt{x}$
b) $y=3 x+1$
c) $f(x)=3^{x}$
d) $g(x)=3 x^{4}-7$
e) $p(x)=x^{-3}+x^{2}+3 x$
f) $y=-4 x^{3}+2 x+5$
2. What are the degree, type, leading coefficient, and constant term of each polynomial function?
a) $f(x)=-x+3$
b) $y=9 x^{2}$
c) $g(x)=3 x^{4}+3 x^{2}-2 x+1$
d) $k(x)=4-3 x^{3}$
e) $y=-2 x^{5}-2 x^{3}+9$
f) $h(x)=-6$
3. For each of the following:

- determine whether the graph represents an odd-degree or an even-degree
polynomial function
- determine whether the leading coefficient of the corresponding function is positive or negative
- state the number of $x$-intercepts
- state the domain and range


c)



4. Use the degree and the sign of the leading coefficient of each function to describe the end behaviour of the corresponding graph. State the possible number of $x$-intercepts and the value of the $y$-intercept.
and the value of the $y$-intercept.
$\begin{aligned} & \text { a) } f(x)=x^{2}+3 x-1 \\ & \text { b) } g(x)=-4 x^{3}+2 x^{2}-x+5\end{aligned}$
c) $h(x)=-7 x^{4}+2 x^{3}-3 x^{2}+6 x+4$
d) $q(x)=x^{5}-3 x^{2}+9 x$
e) $p(x)=4-2 x$
f) $v(x)=-x^{3}+2 x^{4}-4 x^{2}$

You know what seems odd to me? Numbers that aren't divisible by two."


## Your Turn



A toaster oven is built in the shape of a rectangular prism. Its volume, $V$, in cubic inches, is related to the height, $h$, in inches, of the oven door by the function $V(h)=h^{3}+10 h^{2}+31 h+30$. $>$
a) What is the volume, in cubic inches, of the toaster oven if the oven
door height is 8 in.? let $h=8 \quad V(8)=8^{3}+10(8)^{2}+31(8)+30$
b) What is the height of the oven door for the least toaster oven volume? $=1430 \mathrm{in}^{3}$ Explain.

$$
\begin{aligned}
V(1) & =1^{3}+10(1)^{2}+31(1)+30 \\
& =1+10+31+30 \\
& =72 \mathrm{in}^{3}
\end{aligned}\left\{\begin{array}{l}
V(0)=0^{3}+10(0)^{2}+31(0)+30 \\
V(0)=30 \mathrm{in}^{3}
\end{array}\right.
$$

Here's another volume question. Say we know a box is 8 cm wide, 10 cm long, and 2 cm high. What is the volume of the box?


$$
\begin{aligned}
V & =l \times u \times h \\
V & =2 \times 8 \times 10 \\
& =160 \mathrm{~cm}^{3}
\end{aligned}
$$

What if we know the volume of a box? Can we find the dimensions? In order to do that, we have to factor.......which in a way is like dividing.

$$
\begin{aligned}
& \text { Suppose Volume }=30 \mathrm{~cm}^{3} \text {, and let'l use dimension } \\
& \begin{array}{l}
1 \times 15 \times 2 \\
1 \times 3 \times 10 \\
1 \times 5 \times 6
\end{array} \quad \text { that are whole numbers. } \\
& 1 \times 1 \times 30
\end{aligned}
$$

Given that the volume of a
box is 30 cubic cm , what
might the dimensions of
the box be? Let's assume
that each side length is a
whole number.

What might the dimensions of a box be, if we know the volume is given by this polynomial?
$V=x^{3}+2 x^{2}-5 x-6$
... we will kan!

To figure this out, we need to know how to factor a CUBIC polynomial.

Textbook, page 118


The Remainder Theorem

Focus on...

- describing the relationship between polynomial long division
and synthetic division
- dividing polynomials by binomials of the form $x$ - a using long division or synthetic division
explaining the relationship between the remainder when a polynomial is divided by a binomial of the form $x-a$ and the value of the polynomial at $x=$
0

Whiteboard Activity: Long Division - remember that??
If possible, find a long-division "expert" to remind you how to do a
long division question. There are a few shown on the screen.
How can you check whether your answer is correct?

$3 \longdiv { 4 6 8 }$
$9 \longdiv { 8 2 7 2 }$
$2 \longdiv { 1 9 6 9 }$

The basic process is shown in the first 50 seconds of this video:


Long Division Video
EED moratl kemeur
https://www.youtube.com/watch?v=OK0ks0w8Kns


