Any questions from Chapter 1 ?
Working these - closed book, but can use exponent rules foldable
Simplifying radicals with and 2.2

$$
\begin{aligned}
& \text { - Adding and subtracting radicals } \\
& \rho^{70, \# 76)} \\
& \begin{aligned}
\frac{(-4.5)^{3 / 4}}{(-4.5)^{-1 / 4}} & =(-4.5)^{3 / 4-(-1 / 4)} \\
& =(-4.5)^{3 / 4+1 / 4}
\end{aligned} \\
& =(-4.5)^{4 / 4}=(-4.5)^{\prime} \\
& -4.5 \times \frac{10}{10} \\
& =\frac{-45^{10} * 5}{10 \div 5}=\frac{-9}{2},-9 \div 2 \\
& \text { pis, } 21 i)\left(\frac{3}{4}\right)^{-1} \div\left(\frac{16}{9}\right)^{3 / 2} \cdot\left(\frac{4}{3}\right)^{2} \\
& =\frac{4}{3}^{+1} \div \sqrt[2]{\frac{16}{9}}^{3} \cdot \frac{4^{2}}{3^{2}} \\
& =\frac{4}{3} \div\left(\frac{4}{3}\right)^{3} \cdot \frac{4^{2}}{3^{2}} \\
& =\left(\frac{4}{3}\right)^{1} \div\left(\frac{4}{3}\right)^{3} \cdot\left(\frac{4}{3}\right)^{2} \\
& =\left(\frac{4}{3}\right)^{1-3} \cdot\left(\frac{4}{3}\right)^{2} \\
& =\left(\frac{4}{3}\right)^{-2} \cdot\left(\frac{4}{3}\right)^{2}=\left(\frac{4}{3}\right)^{-2+2}=\left(\frac{4}{3}\right)^{0}=1
\end{aligned}
$$

$$
\begin{aligned}
& \left.p_{-2-(-3)}^{16} 22 b\right)\left(\frac{6^{2} x^{3 / 4} y^{-2}}{4^{-2} x^{-1 / 4} y^{-3}}\right)^{-1} \cdot\left(\frac{2 x^{3} y}{3 x y^{1 / 2}}\right)^{2} y^{1-1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
\binom{=\frac{3}{4}+\frac{1}{4}}{=\frac{4}{4}} & =\left(\frac{3 x^{1} y^{\prime}}{2}\right)^{-1} \cdot\left(\frac{2 x^{2} y^{4} z^{\prime 2}}{32}\right) \\
& =\left(\frac{2}{3 x y}\right) \cdot\left(\frac{2^{2} x^{4} y^{12^{\prime 2}}}{3^{2}}\right) \\
& =\left(\frac{2}{3 x y}\right)\left(\frac{4 x^{4} y}{9}\right)=\frac{8 x^{4} y}{27 x y}=\frac{8 x^{3}}{27}
\end{aligned}
$$

$$
\begin{aligned}
& \text { p70, \#7d } \\
& (-0.125)^{2 / 3} \cdot(-0.125)^{-4 / 3} \\
& =(-0.125)^{2 / 3+-4 / 3} \\
& =(-0.125)^{-2 / 3}=\frac{1}{(-0.125)^{2 / 3}}=\frac{1}{\sqrt[3]{-0.125}}=\frac{1}{(-1 / 2)^{2}} \\
& =\frac{1}{\sqrt[3]{-\frac{125}{1000}}^{2}}=\frac{1}{(1 / 4)} \\
& =\frac{1}{\left(\frac{-5}{10}\right)^{2}} \quad=1 \div 1 / 4 \\
& =4
\end{aligned}
$$

Please:
Make sure your name is on your Chapter 1 Hand-in, and turn it in.
Put away your phone and all materials except for the "foldable," a calculator, and something to write with.

On your test, write clearly and show all necessary steps - including on multiple-choice questions!
When you are finished, please look over your test before handing it in.
While other people are still finishing, respect them by being quiet. You can leave the classroom if you wish, but be back in time for the rest of class.

Preview 5

2.1 Simplifying Radical Expressions

Focus: simplify radical expressions with numerical or variable radicand

Arranging Radicals in Size Order

$$
\begin{aligned}
& \text { Ex: Arrange the following from least to } \\
& \text { greatest: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { chase each } \\
& \text { radical to } \\
& 3 \sqrt{7}, 2 \sqrt{17}, 6 \sqrt{2}, 4 \sqrt{5}, 2 \sqrt{21}
\end{aligned}
$$

WT, page 91

Example 1 Comparing and Ordering Radicals

Arrange in order from least to greatest.
a) $9 \sqrt{2}, 2 \sqrt{6}, 8 \sqrt{3}$
b) $7 \sqrt[3]{3}, 3 \sqrt[3]{3}, 8 \sqrt[3]{3} \quad=$ all $\sqrt[3]{3} \quad 3 \sqrt[3]{3}, 7 \sqrt[3]{3}, 8 \sqrt[3]{3}$
c) $7 \sqrt[3]{2}, 6 \sqrt[4]{5}, 4 \sqrt{5}$

$$
\begin{aligned}
& \text { if indices lh e same, calculator! } \quad 1 \text { index } \\
& \text { not the your } \\
& \text { Use you }
\end{aligned}
$$

$$
\sqrt[4]{5}=5^{1 / 4} \quad 6 \times(5)^{1 / 4}=8.97209 \ldots
$$

Remember this:

Division Property

$$
\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}
$$

a) Write $\sqrt[3]{-\frac{40}{81}}$ as a mixed radical.
b) Write $-2 \sqrt[4]{\frac{3}{4}}$ as an entire radical.
a) $\sqrt[3]{\frac{-40}{81}}=\frac{\sqrt[3]{-40}}{\sqrt[3]{81}}$
$=\frac{\sqrt[3]{-8 \cdot \cdot 5}}{\sqrt[3]{27 \cdot 3}}$
$=\frac{\sqrt[3]{(-2 \cdot-2 \cdot-2) \cdot 5}}{\sqrt[3]{(3 \cdot 3 \cdot 3) \cdot 3}}$
$=\frac{-2 \sqrt[3]{5}}{3 \sqrt[3]{3}}=\frac{-2}{3} \sqrt[3]{\frac{5}{3}}$
b) $-2 \sqrt[4]{\frac{3}{4}} \rightarrow+$ entmentron

$$
=-\sqrt[4]{2^{4} \cdot \frac{3}{4}}
$$

$$
=-\sqrt[r]{\frac{66}{1} \cdot \frac{2}{4}} \longrightarrow=-\sqrt[4]{\frac{48}{4}}=-\sqrt[-4]{12}
$$

cyu on p

$$
\begin{aligned}
(y) \text { b) }-3 \sqrt[4]{\frac{2}{27}} & =-\sqrt[4]{3^{4} \cdot \frac{2}{27}} \\
& =-\sqrt[4]{\frac{81 \cdot \frac{2}{27}}{1}} \\
& =-\sqrt[4]{\frac{162}{27}} \\
& =-\sqrt[4]{\frac{54}{9}} \\
& =-\sqrt[4]{6}
\end{aligned}
$$

When Are Radicals Defined?

- Odd index

$$
\begin{aligned}
& \quad x \in \mathbb{R} \\
& \quad x \text { is an element of the real numbers } \\
& \text { Even index } \\
& \text { radicand must be } \geq 0
\end{aligned}
$$

$$
\begin{array}{r}
\text { radicand } \geq 0 \\
\left(\begin{array}{r}
\text { gresth } \\
\text { then } \\
\text { or } \\
\text { equal } \\
\text { to }
\end{array}\right)
\end{array}
$$

WT, page 92

Example 3 Determining when a Radical Is Defined

For which values of the variable is each radical defined?

We will also simplify each of these

b) $\sqrt[3]{12 x^{5}}$

$x \geq 0$
Cyu p93
a) $\sqrt{27 x^{2}}$
$x \in \mathbb{R} \quad \begin{aligned} & \text { work, fen } \\ & \text { any thin!!! }\end{aligned}$

$$
\text { b) } \begin{aligned}
\sqrt[4]{-12 x^{3}} \quad x \leq 0 \quad \begin{aligned}
\text { radicand } & \geq 0 \\
\frac{-\not 2 x^{3}}{-x 2} & \geq 0 \\
x^{3} & \leq 0 \\
x & \leq 0
\end{aligned}, \begin{aligned}
-12
\end{aligned} \\
x
\end{aligned}
$$

Simplify mo mixed radical, if possible.
a) $\sqrt{54 x^{3}}, x \geq 0$
$=\sqrt{9 \cdot 6 \cdot x^{2} \cdot x}$
$=3 x \sqrt{6 x}$
b) $\sqrt[3]{12 x^{5}} \quad, x \in \mathbb{R}$
$=\sqrt[3]{12 \cdot x^{3} x^{2}}$
$=x \sqrt[3]{12 x^{2}}$

WT, page 94

Example 4 Simplifying Radicals with Variable

 RadicandFor which values of the variable is each radical defined?
Write as a mixed radical, if possible.
a) $\sqrt{75 a^{2}}$
b) $\sqrt{18 b^{5}}$
c) $\sqrt[3]{-15 x}$
d) $\sqrt[4]{80 e^{7}}$
a) $\sqrt{75 a^{2}}$
$a \in \mathbb{R}$
b) $\sqrt{18 b^{5}}$ $b \geq 0$
$\sqrt{35 \cdot 3 \cdot a^{2}}$
$=\sqrt{9-2 \cdot\left(b^{5}\right) \cdot b}$

$$
\begin{aligned}
& \text { a) } \sqrt{75 a^{2}} \quad a \in \mathbb{R} \quad \text { b) } \sqrt{ } 18 b^{2}, b \geq 0 \\
& =\sqrt{25 \cdot 3 \cdot a^{2}} \\
& =\sqrt{9-2 \cdot b^{5} \cdot b} \\
& =5 a \sqrt{3} \\
& =3 b^{2} \sqrt{2 b} \\
& =5|a| \sqrt{3} \text { or } 5 \sqrt{3}|a| \\
& \text { c) } \sqrt[3]{-15 x} \quad x \in \mathbb{R} \quad \text { d) } \sqrt[4]{80 e^{7}} \quad e \geq 0 \\
& \begin{array}{l}
\text { Cant reduce any further, } \\
\text { becense there arsh't } \\
\text { any perfect cube fetors }
\end{array} \\
& =\sqrt[4]{16 \cdot 5 \cdot e^{4} \cdot e^{3}} \\
& =2 e \sqrt[4]{5 e^{3}}
\end{aligned}
$$

2.2 Adding and Subtracting Expressions

Focus: simplify sums and differences of radical expressions

Radicals

Radicals
\oplus
Radicals

Radicals

Simplify.
a) $5 \sqrt{6}-2 \sqrt{6}$
b) $\sqrt[3]{128}-\sqrt[3]{16}-\sqrt[3]{54}$
c) $\sqrt{20}+\sqrt{18}+\sqrt{45}-\sqrt{50}$

$$
\begin{aligned}
& \text { * Chick to be } \\
& \text { sure that the } \\
& \text { modena and } \\
& \text { radical } \\
& \text { MATCH }
\end{aligned}
$$

a) $5 \sqrt{6}-2 \sqrt{6}=3 \sqrt{6}$
b) $\sqrt[3]{128}-\sqrt[3]{16}-\sqrt[3]{54}$

$$
\begin{aligned}
& =\sqrt[3]{64 \cdot 2}-\sqrt[3]{8 \cdot 2}-\sqrt[3]{27 \cdot 2} \\
& \text { possibly } \begin{array}{c}
\text { rodicend } \\
\text { will }
\end{array} \\
& \text { meter } \\
& =4 \sqrt[3]{2}-2 \sqrt[3]{2}-3 \sqrt[3]{2} \\
& =-1 \sqrt[3]{2} \text { usually with ar }-\sqrt[3]{2} \\
& \text { C) } \sqrt{20}+\sqrt{18}+\sqrt{45}-\sqrt{50} \\
& =\sqrt{4 \cdot 5}+\sqrt{9.2}+\sqrt{9 \cdot 5}-\sqrt{25 \cdot 2} \\
& =2 \sqrt{5}+3 \sqrt{2}+3 \sqrt{5}-5 \sqrt{2} \\
& =5 \sqrt{5}-2 \sqrt{2}
\end{aligned}
$$

Finish worktext questions for 2.1, and the ones in section 2.2 that
relate to what we've already looked at tonight.

