Class_05 May10 Solving and Graphing Polynomials

Plan For Today:									
1. Question about anything? Hand back Test 1 - p 2. Finish Chapter 3: Polynomial Functions	olease returi	n to	me	in c	lass.				
 3.1: Characteristics of Polynomial Functions (Review?) 3.2: Dividing Polynomials (Finish) 3.3: Factoring and Solving Polynomials 	Factor Completely Using Synthetic Division $f(x) = 2x^4 + 5x^3 + 5x^2 + 20x - 12 \qquad x = -3 \qquad x = -3$								
 3.4: Characteristics of Polynomials Graphs 5. Work on practice questions from Textbook 		-3	2 ↓	5 -6	5 3	20 -24	-12 12		
Page 124: #1-2, 3a, 4c, 5b, 6-8 Page 133:		1/2							
#1-4, 5ace, 7bd, 9, 11 Page 147: #1-2, 3ac, 4ac, 5, 9ae, 14, 16			2	0	8				
	$2x^4 + 5x^3$	$+5x^{2}$	+ 20	(x-1)	2 = 2	(x+3)	$\left(x-\frac{1}{2}\right)$	$(x^2 + 4)$	

Plan Going Forward:

1. Finish going through practice question from 3.2-3.4 in textbook. Focus on completing the questions in the chapter 3 assignment.

Chapter 3 Assignment due Monday, May 15th

2. You will start Chapter 4 Trigonometry on Thursday (tomorrow). Have a look through these sections to prepare for tomorrow.

Test 2 on Monday, May 15th (on CH3 & 4.1 From Thursday)

Please let us know if you have any questions or concerns about your progress in this course. The notes from today will be posted at <u>egolfmath.weebly.com</u> after class. Anurita Dhiman = adhiman@sd35.bc.ca Susana Egolf = segolf@sd35.bc.ca

Review

$f(x) = x^4 - 4x^3 + 2x^2 + x + 4$	$f(x) = -x^5 + 6x^2 - 11x + 3$
1. Degree =	1. Degree =
2. Leading coefficient =	2. Leading coefficient =
3. End behavior =	3. End behavior =
4. Possible number of x-intercepts =	4. Possible number of x-intercepts =
5. value of y-intercept =	5. value of y-intercept =
6. domain =	6. domain =
7. range =	7. range =

Dividing Polynomials Long Division **Synthetic Division** $2x^2 + x - 5$ $x-3 \quad 2x^3-5x^2-8x+15$ 3 2 -5 -8 15 3 2 -5 -0 1 6 3 15 2 1 -5 0 Remainder $\frac{2x^3-6x^2}{x^2}-8x$ $x^2 - 3x$ -5x+15-5x + 15Remainder 0

Unit 1 Transformations Page 2

Section 3.2-3.3: Practice Dividing Polynomials

Do long division AND synthetic division for each of the following and write the division statement at the end.

Long Division Synthetic Division $x^{3} + 7x^{2} + 14x + 3$ x+2 $(x+2)x^3 + 7x^2 + 14x + 3$ ↓ 3+22 ż 14 7 2 $5\pi^{2} + 14\pi$ $5\pi^{2} + 10\pi$ $7 + 10\pi$ $7 + 10\pi$ Х -4x+8x+2 Remainder = -5binomial = 2+2Remainder = $P(-2) = (-2)^3 + 7(-2)^2 + 14(-2) + 3$ ritied P(-2) = -5

1.
$$(x^3 + 7x^2 + 14x + 3) \div (x+2)$$

Division Statement:

$$x^{3}+7x^{2}+14x+3 = x^{3}+5x+4-\frac{5}{x+2}$$

$$(x^{3} + 7x^{2} + 14x + 3)(x+2) = (x^{2} + 5x + 4)(x+2) - 5$$

3.2 Remainder Theorem

a) Use the Remainder Theorem to find the remainder when $P(x) = 8x^3 + 4x^2 - 19$ is divided

 $p(1) = 8(1)^{3} + 4(1)^{2} - 19$ = -7

Example 2

P.

Apply Polynomial Long Division to Solve a Problem

The volume, *V*, of the nested boxes in the introduction to this section, in cubic centimetres, is given by $V(x) = x^3 + 7x^2 + 14x + 8$. What are the possible dimensions of the boxes in terms of *x* if the height, *h*, in centimetres, is x + 1?

Your Turn

The volume of a rectangular prism is given by $V(x) = x^3 + 3x^2 - 36x + 32$. Determine possible measures for *w* and *h* in terms of *x* if the length, *l*, is x - 4.

3.3 Factor Theorem

Your Turn

A form that is used to make large rectangular blocks of ice comes in different dimensions such that the volume, *V*, in cubic centimetres, of each block can be modelled by $V(x) = x^3 + 7x^2 + 16x + 12$, where *x* is in centimetres. Determine the possible dimensions, in terms of *x*, that result in this volume.

Graphing a cubic function with transformations: follow the steps for transformations you learned in Chapter 1.

Graphing Polynomial Functions using Transformations

The graph of a function of the form $y = a(b(x - h))^n + k$ is obtained by applying transformations to the graph of the general polynomial function $y = x^n$, where $n \in N$. The effects of changing parameters in polynomial functions are the same as the effects of changing parameters in other types of functions.

Your Turn

Transform the graph of $y = x^3$ to sketch the graph of $y = -4(2(x + 2))^3 - 5$.

INTERCEPTS AND ZEROS

Multiplicity is the number of times an x-intercept occurs in a graph:

Roots

Multiplicity of roots

Single root Example: Factor (x+2) root: -2

double root

graph goes straight through root

root Example: Factor (x-1)²

root: 1 (M2) graph goes through the root like a quadratic

If you factor the polynomial, you can see the value of the x-intercepts (roots) and the corresponding multiplicity

Real roots are x-intercepts. To find the roots, we let y = 0 and solve for x.

Example: Find the roots for the following.

$$y = (x+5)(x-3)(2x+4)$$
 Roots: -5, 3, -2

$$y = x(x-4)^2(3x+1)$$
 Roots: 0, 4 (M2), $-\frac{1}{3}$

$$y = x^{2}(3-x)(x+4)^{3}$$
 Roots: 0 (M2), 3, -4 (M3)

To find the y-intercept, make x=0 and solve for y:

Example: Find the y-intercept for each

$$y = (x+5)(x-3)(2x+4)$$
 y-intercept: (0, -60)

$$y = -x^4 + 2x^3 - x^2 + 3x + 20$$
 y-intercept: (0, 20)

$$y = x^{2}(3-x)(x+4)^{3}$$
 y-intercept: (0,0)

HOW TO FIND
X & Y INTERCEPTS
GRAPHICALLY & ALGEBRAICALLY

$$f(x) = x^2 + 5x + 6$$

 $y = 0^2 + 5(0) + 6$
 $y = 0^2 + 5(0) + 6$
 $y = 0^2 + 5(0) + 6$
 $y = 6$
 $(0, 6)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0)$
 $(3, 0) (2, 0) (2, 0)$
 $(3, 0) (2, 0) (2, 0)$
 $(3, 0) (2, 0) (2, 0)$
 $(3, 0) (2, 0) (2, 0)$
 $(3, 0) (2, 0) (2, 0)$
 $(3, 0) (2, 0) (2, 0)$
 $(3, 0) (2, 0) (2, 0) (2, 0)$
 $(3, 0) (2,$

To graph a polynomial function:

- 1. Determine the y-intercept by making x=0
- 2. Determine the x-intercepts by solving the polynomial when y=0
- (or you can use your graphing calculator to find these characteristics)
- 3. Use the degree and leading coefficient to determine behaviour.
- 4. Use the table of values to estimate the relative and/or

3. Use the degree and leading coefficient to determine behaviour.

 Use the table of values to estimate the relative and/or absolute Max's and Min's and get other points.
 Draw the curve with the correct behaviour.

Coordinates of relative

Pre-Calc 12 - Unit 1 Page 26 3.4 Equations and Graphs of Polynomial Functions As we just saw, the solutions of an equation match up with the x-intercepts of the graph. Example a) Graph the function $f(x) = x^4 + x^3 - 10x^2 - 4x + 24$ using graphic ology. What are its x-intercepts? Integral zero theorem b) Use the results from part (a) to help fully factor $f(x) = x^4 + x^3 - 10x^2 - 4x + 24$. P(2)=0 P(-2)=0±1,±2,±3 1 1 ± 4, ±6, 1 x-2 2 x+2 ±8,±12 ± 24 x $\frac{1}{x^{2}}$ $\frac{1}{x^{-6}}$ $\frac{1}{x^{-6}}$ $\frac{1}{x^{-6}}$ $\frac{1}{x^{-6}}$ $\frac{1}{x^{-2}}$ $\frac{1$ Pre-Calc 12 – Unit 1 Page 27

Example Factor completely, then analyze and sketch the graph of this polynomial function without using technology: $f(x) = x^3 + 3x^2 - 6x + 3x^2 + 5x^2 + 5x^2$

Degree	
Leading coefficient	
End behavior	
Zeros/x-intercepts	
y-intercept	
Interval(s) where function is	+ -4 < x < 1
positive or negative	1 42 42

_									4	<u> </u>		_								L
																	1	F		
						Г					Г			Г		6	Ζ.			Г
																				Г
						\square							4							1
									Η		F	17	П							F
-					H	t			Н		\vdash			t						F
-					-	t-	•		Н		F	H	H	\vdash						h
-	-				-	۰.			H		⊢	Ħ	-	⊢			-		-	H
-	-	-	-		-	≁	H	н	Н	⊢	⊢		-	-	\vdash		-		-	H
-	-	-	-	-	н	0-	H	н	H	⊢	H	ρ-	-	-	-	-	-	-	_	h
-	-	-	-		Н	-			Н	⊢	H	-	-	⊢			-		-	-
-	-	-	-		H	-			Н	⊢	Н	-	-	-			-		-	-
-	-	-	-		ł	-	-		Н	-	Н	-	-	-	-		-		_	┝
_	-				⊢	1			н		н	-	-	1			-		_	L
_				11	_	⊢			4		Ц	1	-	⊢					_	L
_				12	Ľ.,	⊢			ч		4		_	⊢						L
_				Ľ.,					1		L		_							L
									N	L.										
	5	N			Ľ	Ľ				r	Ľ	Ľ	Ľ	Ľ						Ľ
0	Л	Π.			1	Γ.			1	17	Γ	Γ.	Γ.	Γ_						Γ
٩		_			Γ.	Γ				1	Γ.	Γ.	Γ.	Γ.			1			Γ

•

If a polynomial has a factor x - a that is repeated *n* times, then x = a is a zero of **multiplicity**. *n*. The function $f(x) = (x - 1)^2(x + 2)$ has a zero of multiplicity 2 at x = 1 and the equation $(x - 1)^2(x + 2) = 0$ has a root of multiplicity 2 at x = 1.

Pre-Calc 12 – Unit 1 Page 28

Multiplicity of a zero – the multiplicity of a zero is the number of times a zero of a polynomial occurs.

Your Turn

- For the graph of the polynomial function shown, determine
- the least possible degree
- · the sign of the leading coefficient
- the *x*-intercepts and the factors of the function of least possible degree
 the intervals where the function is positive and the intervals where it

Your Turn

Sketch a graph of each polynomial function by hand. State the characteristics of the polynomial functions that you used to sketch the graphs.

a) $g(x) = (x - 2)^3(x + 1)$ b) $f(x) = -x^3 + 13x + 12$

C_05 Key and Poly Graph Equations WS

Wednesday, September 22, 2021 7:16 PM

For each polynomial graph, determine

- Coordinates of its x-intercepts
- Coordinates of its y-intercept
- Equation of the polynomial, in factored form

Polynomial Graphs

