Class_05 May10 Solving and Graphing Polynomials

Plan For Todays

1. Question about anything? Hand back Test 1 - please return to me in class.
2. Finish Chapter 3: Polynomial Functions

- 3.1: Characteristics of Polynomial Functions (Review?)
- 3.2: Dividing Polynomials (Finish)
- 3.3: Factoring and Solving Polynomials
- 3.4: Characteristics of Polynomials Graphs

5. Work on practice questions from Textbook

Page 124:
\#1-2, 3a, 4c, 5b, 6-8
Page 133:
\#1-4, 5ace, 7bd, 9, 11
Page 147:
\#1-2, 3ac, 4ac, 5, 9ae, 14, 16

$$
\text { \#1-2, 3ac, 4ac, 5, 9ae, 14, } 16
$$

Plan Going Forwards

1. Finish going through practice question from 3.2-3.4 in textbook. Focus on completing the questions in the chapter 3 assignment.

CHAPTER 3 ASSIGNMENT DUE MONDAY. MAY $15 T H$

2. You will start Chapter 4 Trigonometry on Thursday (tomorrow). Have a look through these sections to prepare for tomorrow.

* TEST 2 ON MONDAY. MAY 15TH (ON CH3 \& 4.1 FROM THURSDAY)

Please let us know if you have any questions or concerns about your progress in this course. The notes from today will be posted at egolfmath.weebly.com after class. Anurita Dhiman = adhiman@sd35.bc.ca Susana Egolf = segolf(sd35.bc.ca

$$
\begin{aligned}
& \text { Factor Completely Using Synthetic Division } \\
& f(x)=2 x^{4}+5 x^{3}+5 x^{2}+20 x-12 \quad x=-3 \quad x=\frac{1}{2} \\
& 2 x^{4}+5 x^{3}+5 x^{2}+20 x-12=2(x+3)\left(x-\frac{1}{2}\right)\left(x^{2}+4\right)
\end{aligned}
$$

$f(x)=x^{4}-4 x^{3}+2 x^{2}+x+4$	$f(x)=-x^{5}+6 x^{2}-11 x+3$
1. Degree $=$	1. Degree $=$
2. Leading coefficient $=$	2. Leading coefficient $=$
3. End behavior $=$	3. End behavior $=$
4. Possible number of x -intercepts $=$	4. Possible number of x -intercepts $=$
5. value of y -intercept $=$	5. value of y -intercept $=$
6. domain $=$	6. domain $=$
7. range $=$	7. range $=$

Dividing Polynomials

$$
\begin{aligned}
& \text { Long Division } \\
& 2 x^{2}+x-5 \\
& x - 3 \longdiv { 2 x ^ { 3 } - 5 x ^ { 2 } - 8 x + 1 5 } \\
& 2 x^{3}-6 x^{2} \\
& x^{2}-8 x \\
& x^{2}-3 x \\
& -5 x+15 \\
& -5 x+15 \\
& \text { Remainder } 0
\end{aligned}
$$

Section 3.2-3.3: Practice Dividing Polynomials
Do long division AND synthetic division for each of the following and write the division statement at the end.

1. $\left(x^{3}+7 x^{2}+14 x+3\right) \div(x+2)$

Division Statement:

$$
x^{3}+7 x^{2}+14 x+3=x^{2}+5 x+4-\frac{5}{x+2}
$$

OR

$$
\left(x^{3}+7 x^{2}+14 x+3\right)(x+2)=\left(x^{2}+5 x+4\right)(x+2)-5
$$

3.2 Remainder Theorem

Synthetic Division

Synthetic Division can only be used if the divisor is a linear factor.

1. Write down the coefficients of the dividend (insert dummy terms if necessary).
2. Change the sign of the constant in the divisor.
3. Bring down the first coefficient of the dividend.
4. Multiply, add, repeat.
5. The answer is the sequence of coefficients of the new polynomial but one degree less than the original polynomial. 6 . The last term is the remainder, put that over the divisor.

Example:
Divide $2 x^{3}+6 x^{2}+29$ by $x+4$

Coefficients of quotient Remainder
$\left(2 x^{3}+6 x^{2}+29\right) \div(x+4)=2 x^{2}-2 x+8-\frac{3}{x+4}$

Synthetic Division

Synthetic Division can only be used if the divisor is a linear factor.

$$
\text { Divide } a x^{3}+b x^{2}+c x+d \text { by } x-k
$$

Coefficients of quotient Remainder
Example:
Divide $2 x^{3}+6 x^{2}+29$ by $x+4$

Coefficients of quotient Remainder
$\left(2 x^{3}+6 x^{2}+29\right) \div(x+4)=2 x^{2}-2 x+8-\frac{3}{x+4}$

Remainder Theorem:

When a polynomial, $P(x)$, is divided by a binomial, $x-a$, the remainder is $P(a)$.
If $P(a)=0$, then the binomial $x-a \quad$ is a factor of $P(x)$.
If $P(a) \neq 0$, then the binomial $x-a \quad$ is not a factor of $P(x)$.

Example

a) Use the Remainder Theorem to find the remainder when $P(x)=8 x^{3}+4 x^{2}-19$ is divided

$$
\begin{aligned}
& \text { by } \underbrace{x+2}_{\downarrow} \\
& \stackrel{\downarrow}{P(-2)}=8(-2)^{3}+4(-2)^{2}-19 \\
& =-67 \\
& \text { b) Check your answer by using synthetic division. }
\end{aligned}
$$

c) Use the Remainder Theorem to find the remainder when $P(x)=8 x^{3}+4 x^{2}-19$ is divided $x+2$ by $x-1$.

$$
\begin{aligned}
P(1) & =8(1)^{3}+4(1)^{2}-19 \\
& =-7
\end{aligned}
$$

Example 2
Apply Polynomial Long Division to Solve a Problem
The volume, V, of the nested boxes in the introduction to this section, in cubic centimetres, is given by $V(x)=x^{3}+7 x^{2}+14 x+8$. What are the possible dimensions of the boxes in terms of x if the height, h, in centimetres, is $x+1$?

Your Turn
The volume of a rectangular prism is given by $V(x)=x^{3}+3 x^{2}-36 x+32$. Determine possible measures for w and h in terms of x if the length, l, is $x-4$.

p. 121

$$
\frac{x^{3}+3 x^{2}-36 x+32}{x-4}=w h
$$

$$
\begin{aligned}
& w h=x^{2}+7 x-8 \\
& w h=(x+8 x x-1)
\end{aligned}
$$

$$
\omega
$$

$$
h
$$

$$
h
$$

ω
8. For each dividend, determine the value of k if the remainder is 3 ,
a) $\left(x^{3}+4 x^{2}-x+k\right) \div(x-1)$
\#5 +6 in
ch 3 HW
b) $\left(x^{3}+x^{2}+k x-15\right) \div(x-2)$
a) $\left(x^{3}+4 x^{2}-x+k\right) \div(x-1)$
b) $\left(x^{3}+x^{2}+k x-15\right) \div(x-2)$
c) $\left(x^{3}+k x^{2}+x+5\right) \div(x+2)$
d) $\left(k x^{3}+3 x+1\right) \div(x+2)$
binomial $x-1$

$$
\begin{gathered}
R=P(1)=3 \\
(1)^{3}+4(1)^{2}-1+k=3 \\
1+4-1+k=3 \\
4+k=3 \\
-4=-1
\end{gathered}
$$

$x+2$

$$
\begin{gathered}
P(-2)=3 \\
(-2)^{3}+k(-2)^{2}+(-2)+5=3 \\
-8+4 k-2+5=3 \\
4 k-5=3 \\
+5+5 \\
4 k=\frac{8}{4} \\
k=2
\end{gathered}
$$

2. $\left(10 x^{3}+37 x^{2}+37 x+6\right) \div(x+2)$

Remainder Theorem
If a polynomial $f(x)$ is divided by $(x-a)$, the remainder is $f(a)$.
$f(x)=(x-a) Q(x)+f(a)$

Factor Theorem
A polynomial $f(x)$ has a factor $(x-a)$ if and only if $f(a)=0$.

$$
\begin{aligned}
& \text { Pr-Cake 12-Unin 1 } \quad x-\boldsymbol{a} \\
& P(a)=0 \\
& \text { The Factor Theorem } \\
& \text { for eachrinomial below, find the remainder when } P(x)=x^{3}-4 x^{2}+x+6 \text { is divided by means } \\
& \text { the binomial. Which of the following binomials are factors of } P(x)=x^{3}-4 x^{2}+x+6 \text { ? } \quad \boldsymbol{x}-\boldsymbol{a} \text { IS } \\
& \text { a) } \left.x+1 P(-1)=(-1)^{3}-4(-1)^{2}+(-1)+6 d\right) x-1 \quad P(1)=(1)^{3}-4(1)^{2}+1+6 \text { a factor. } \\
& =0 \text { YES } x+1 \text { is }=4 \text { NO } x-1 \text { is } \\
& \text { b) } x+2 P(-2)=-20{ }_{\text {NO }}^{\text {a }} \text { asturnemiol e) } x-2 \quad \mathrm{P}(2)=0 \text { YES } \\
& \text { c) } x+3 \quad P(-3)=-60 \text { NO }{ }^{\text {fi }} x-3 \quad \mathrm{P}(3)=0 \quad \text { YES }
\end{aligned}
$$

[^0]Example
Consider the polvingmial: $P(x)=x^{2}+7 x^{2}-28 x+20$
a) Given tha $P(-10)=0$, what binomial must be a factor of $P(x)$?
b) Factor $P(x)$ completely.
factor is $(x+10)$

Synthetic Division

Synthetic Division can only be used if the divisor is a linear factor.
Divide $a x^{3}+b x^{2}+c x+d$ by $x-k$

Coefficients of quotient Remainder
Example:
Divide $2 x^{3}+6 x^{2}+29$ by $x+4$

| -4 | 2 6 0
 \vdots -8 8
 \vdots -32
 2 -2 8 | -3 |
| :---: | :---: | :---: | :---: | :---: |

Coefficients of quotient Remainder $\left(2 x^{3}+6 x^{2}+29\right) \div(x+4)=2 x^{2}-2 x+8-\frac{3}{x+4}$

The Zeros or Roots of a Polynomial Function

 Graphically: the real zeros or real roots of a polynomial function are the x-intercepts of the graph.

Rational Zeros Theorem: If a polynomial function has rational zeros, they will be a ratio of the factors of the constant to the factors of the leading coefficient.

Example: $f(x)=2 x^{3}-9 x^{2}+7 x+6$
$6: \pm 1, \pm 2, \pm 3, \pm 6 \quad- \pm 1, \pm 2, \pm 3, \pm 6$
$2: \pm 1, \pm 2$

The relationship between the factors of a polynomial and the constant term of the polynomial is stated in the integral zero theorem.
The integral zero theorem states that if $x-a$ is a factor of a polynomial function $P(x)$ with integral coefficients, then a is a factor of the constant term of $P(x)$

integral zero

theorem

- if $x=\sigma$ is an integral
zero of a polynomial
PAx) with integral
Px). with integral
coefficients, then is a
factor of the constant
factor of the constant
term of $P(x)$

a) According to the integral zero theorem, which values could possibly give factors of this
polynomial? \& look at constant term \rightarrow 3, determine factors der and factor theorems to find a factor. of 3 b) Use the remainder and factor theorems to find a factor. gives a
TEST factors t determine which ore give
$\pm 1, \pm 3$ possible
factors.

c) Use ether lo division or synthetic division to divide $2 x^{3}-5 x^{2}-4 x+3$ by the factor
found in parr

$x+1$	1	2	-5	-4	3

1	2	-5	-4	3
-	2	-7	3	
x	$2+-7$	3	0	

$2 x^{2}-7 x+3 \quad A C=6$
$2 x^{2}-6 x-x+3$
$2 x(x-3)-(x-3)$
$(x-3)(2 x-1)$
d) What is the filly factored form of $\left.2 x^{2}-5 x^{2}-4 x+3 ?\right)(x+1)(x-3)(2 x-1)$

Consider the equal ($2 x^{3}-5 x^{2}-4 x+3=0$, what are the solutions to this equation?
$3(x+1)(x-3)(2 x-1)=0$

x-intercepts
$(-1,0),(3,0),\left(\frac{1}{2}, 0\right)$

\#8 ch 3 assign

Your Turn
since x^{4}

$$
\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18
$$

find TwO
factors by testing

$$
\# 8-1+45 \pm 1, \pm 3, \pm 5, \pm 9, \pm 15, \pm 45 \text {. }
$$

p. 131 YauTurn

$$
x^{4}-3 x^{3}-7 x^{2}+15 x+18
$$

notice
$=$ need synthetic
division twice,
Test $P(1)=24 \quad(1)^{4}-3(1)^{3}-7(1)^{2}+15(1)+18$ to get to wo

Test $P(1)=24$

$$
2
$$

$$
-P(-1)=0
$$

$$
-P(3)=0
$$

$$
P(-3)=
$$

(1)

$$
\begin{array}{r|rrrr}
x+1 & \left.\right|^{x^{4}}-3 & -7 & 15 & 18 \\
- & \int_{1}^{1} \frac{1}{2}-4 & -3 & 18 & 0
\end{array}
$$

(2)

$$
\begin{array}{r}
x-3 \\
- \\
\begin{array}{l}
1 x^{x^{3}}-4 \\
x
\end{array} \left\lvert\, \begin{array}{lll}
x, 3 & 18 \\
1 x^{-3}-1 & -6 & 18 \\
x^{2}-x-6 \\
(x-3)(x+2)
\end{array}\right. \\
(x)
\end{array}
$$

Fully Factored farm $=$ collect all binomials

Example 4 \qquad

$$
\begin{aligned}
& (x+1)(x-3)(x-3)(x+2) \\
& \text { or }(x+1)(x-3)^{2}(x+2)
\end{aligned}
$$

Solve Problems Involving Polynomial Expressions
An intermodal container that has the shape of a rectangular prism has a volume, in cubic feet, represented by the polynomial function $V(x)=x^{3}+7 x^{2}-28 x+20$, where x is a positive real number.
What are the factors that represent possible dimensions, in terms of x, of the container?

Solve?

$$
x=-1,3,2
$$

Your Turn
A form that is used to make large rectangular blocks of ice comes in different dimensions such that the volume, V, in cubic centimetres, of each block can be modelled by $V(x)=x^{3}+7 x^{2}+16 x+12$, where x is in centimetres. Determine the possible dimensions, in terms of x, that result in this volume.

3.4 Equations and Graphs of Polynomial Functions

Graphing a cubic function with transformations: follow the steps for transformations you learned in Chapter 1.

Graphing Polynomial Functions using Transformations

The graph of a function of the form $y=a(b(x-h))^{n}+k$ is obtained by applying transformations to the graph of the general polynomial function $y=x^{n}$, where $n \in \mathrm{~N}$. The effects of changing parameters in polynomial functions are the same as the effects of changing parameters in other types of functions.

Your Turn

Transform the graph of $y=x^{3}$ to sketch the graph of $y=-4(2(x+2))^{3}-5$.

assign.

11a) Give the mapping that shows what happens to points on the base function, $y=x^{3}$, when
the equation is changed to $y=\frac{1}{2}\left(-\frac{1}{2} x-1\right)^{3}-2$

$$
\text { Factor } \quad y=\frac{1}{2}\left(-\frac{1}{2}(x+2)\right)^{3}-2
$$

b) Fill in the table of key points for the base function. Using the mapping, create the table of image points that result when the original points are transformed. Sketch the transformed graph on the grid.

INTERCEPTS AND ZEROS

To find the x-intercepts of $y=f(x)$, set $y=0$ and solve for x.

Multiplicity is the number of times an x-intercept occurs in a graph:

Roots

Multiplicity of roots

Single root Example: Factor $(x+2)$
root: -2
graph goes straight through root

double root Example: Factor $(x-1)^{2}$ root: 1 (M2)
graph goes through the root like a culadratic

To find the x-intercepts of $y=f(x)$, set $y=0$ and solve for x.
x-intercepts correspond to the zeros of the function
$x^{2}-x-2=0$
$(x+1)(x-2)=0$
$x=-1$
To find the y-intercepts of $y=f(x)$, set $x=0$; the y-intercept is $f(0)$.
$f(0)=(0)^{2}-0-2$ $=-2$

Roots

Multiplicity of roots

Single root Example: Factor $(x+2)$ root: -2
graph goes straight through root double root Example: Factor $(x-1)^{2}$ root: 1 (M2)
graph goes through the root like a quadratic
triple root Example: Factor $(x+4)^{3}$ root: -4 (M3)
graph goes through the root like a cubic

If you factor the polynomial, you can see the value of the x-intercepts (roots) and the corresponding multiplicity

Real roots are x-intercepts.
To find the roots, we let $\mathrm{y}=0$ and solve for x .

Example: Find the roots for the following.

$$
\begin{aligned}
& y=(x+5)(x-3)(2 x+4) \quad \text { Roots: }-5,3,-2 \\
& y=x(x-4)^{2}(3 x+1) \quad \text { Roots: } 0,4(\mathrm{M} 2),-\frac{1}{3} \\
& y=x^{2}(3-x)(x+4)^{3} \quad \text { Roots: } 0 \text { (M2), 3, -4 (M3) }
\end{aligned}
$$

To find the y-intercept, make $x=0$ and solve for y :
Example: Find the y-intercept for each

$$
y=(x+5)(x-3)(2 x+4) \quad y \text {-intercept: }(0,-60)
$$

$$
y=-x^{4}+2 x^{3}-x^{2}+3 x+20 \quad y \text {-intercept: }(0,20)
$$

$$
y=x^{2}(3-x)(x+4)^{3} \quad y \text {-intercept: }(0,0)
$$

HOW TO FIND
EXAMPLES
X \& Y INTERCEPTS
GRAPHICALLY \& ALGEBRAICALLY

$$
f(x)=x^{2}+5 x+6
$$

x-intercept $(x, 0)$	y-intercept $(0, y)$
$0=x^{2}+5 x+6$	$y=0^{2}+5(0)+6$
$0=(x+3)(x+2)$	$y=6$
$x=-3 x=-2$	

$x=-3 \quad x=-2$
$(-3,0)(-2,0)$

To graph a polynomial function:

1. Determine the y-intercept by making $x=0$
2. Determine the x-intercepts by solving the polynomial when $y=0$ (or you can use your graphing calculator to find these characteristics)
3. Use the degree and leading coefficient to determine behaviour.
4. Use the table of values to estimate the relative and/or

5. Use the degree and leading coefficient to determine behaviour.
6. Use the table of values to estimate the relative and/or absolute Max's and Min's and get other points. 5. Draw the curve with the correct behaviour.
3.4 Equations and Graphs of Polynomial Functions

As we just saw, the solutions of an equation match up with the x-intercepts of the graph.
Example
a) Graph the function $f(x)=x^{4}+x^{3}-10 x^{2}-4 x+24$ wing memling deelurelegs What
are its x-intercepts?

Integral zero theorem

b) Use the results from part (a) to help fully factor $f(x)=x^{4}+x^{3}-10 x^{2}-4 x+24$
$P(2)=0 \quad P(-2)=0$
(1) $\frac{\downarrow}{x-2}$ (2) $x^{\downarrow+2}$
$\pm 1, \pm 2, \pm 3$
(1) $x-2 \mid x^{4}+x^{3}-10 x^{2}-4 x+24$
$\pm 4, \pm 6$,
$\pm 8, \pm 12$
(1)

-2	1	1	-10	-4	24
-		-2	-6	8	24
x	1	3	-4	-12	0

(2)

\[

\]

$x^{2}+x-6$
$\underbrace{(x+3)(x-2)(x+2)(x-2)}$
$f(x)=(x+3)(x+2)(x-2)^{2} \quad$ multiplicity
c) What are the solutions to the equation: $\quad x^{4}+x^{3}-10 x^{2}-4 x+24=0$

$$
x=-3,-2,2
$$

these are x-intercepts.

Pre-Calc 12 - Unit 1
Page 27

Example

Factor completely, then analyze and sketch the graph of this polynomial function without
using technology: $\quad f(x)=x^{3}+3 x^{2}-6 x- \pm \pm 1, \pm 2 \pm 4, \pm 8$

Degree	
Leading coefficient	
End behavior	
Zeros x-intercepts	
y-intercept	$t-4<x<1$
Intervals) where function is positive or negative	$-1<x<2$

If a polynomial has a factor $x-a$ that is repeated n times, then $x=a$ is a zero of multiplicity, n. The function $f(x)=(x-1)^{2}(x+2)$ has a zero of multiplicity 2 at $x=1$ and the equation $(x-1)^{2}(x+2)=0$ has a root of multiplicity 2 at $x=1$.

multiplicity

(of a zero)

- the number of times a zero of a polynomial function occurs
- the shape of the graph of a function close to a zero depends on its
 multiplicity

Multiplicity of a zero - the multiplicity of a zero is the number of times a zero of a polynomial occurs.

Example
Find the equation for the given graph.
(1) x-intercepts + mult.phrecty
(2) $x=-2, x=3$
 $M_{2} \xrightarrow[(x+2)^{2}]{(x-3)^{3}<M_{3}}$
(3) use another point on graph $\frac{\lambda 2}{-2}$

to solve for ' a ' ${ }^{2}{ }^{5}$ by substitution

$$
\begin{aligned}
& \text { Solve for } \\
& y=a(x+2)^{2}(x-3)^{3} \quad y \text { by substitution } \\
& y-1 n t= \\
& 0,27)
\end{aligned}
$$

$$
27=a(0+2)^{2}(0-3)^{3}
$$

$$
27=a(4)(-27)
$$

$$
\begin{aligned}
& 27=a(4)(-27) \\
& \frac{27}{-108}=\frac{-108 a}{-108} \rightarrow a=-\frac{1}{4} \quad y=-\frac{1}{4}(x+2)^{2}(x-3)^{3}
\end{aligned}
$$

Your Turn
For the graph of the polynomial function shown, determine

- the least possible degree
- the sign of the leading coefficient
- the x-intercepts and the factors of the function of least possible degree
- the intervals where the function is positive and the intervals where it
is negative

Your Turn
Sketch a graph of each polynomial function by hand. State the
characteristics of the polynomial functions that you used to sketch
the graphs.
a) $g(x)=(x-2)^{3}(x+1)$
b) $f(x)=-x^{3}+13 x+12$

C_05 Key and Poly Graph Equations WS

Wednesday, September 22, 2021 7:16 PM

For each polynomial graph, determine

- Coordinates of its x-intercepts
- Coordinates of its y-intercept
- Equation of the polynomial, in factored form

Polynomial Graphs
\#1

Polynomial Graphs Key
\#1
even
t
$\frac{x-\operatorname{lnt}}{(-1,0)}$
$(2,0)$
$(3,0)$
$y-1 n t$
$(0,6)$

$\begin{aligned} & y=3(x+4 / 3) \text { OR } y= 3 x+4 \\ & \text { even }\end{aligned}$

$$
y=\frac{1}{18}(x+2)(x+1)(x-3)^{2}(x-5) ?
$$

(see below for y-intercept)

$$
\begin{aligned}
& y=\frac{1}{18}(x+2)(x+1)(x-3)^{2}(x-5) \\
& \text { Let } x=0 \text {, to find } y \text {-intercept: } \\
& y=\frac{1}{18}(2)(1)(-3)^{2}(-5) \\
& y=\frac{1}{18}(2)(9)(-5) \\
& y=-5 \\
& (0,-5) \\
& \text { Let } x=0 \\
& y=-(-3)^{2}(-5) \\
& =-(a)(-5) \\
& =45 \\
& (0,45)
\end{aligned}
$$

[^0]: Factor Theorem: $x-a$ is a factor of a polynomial, $P(x)$, if and only if $P(a)=0$

