Tonight's Class:

- Chapter 1 Test Return
- Warm-up, 3.1, using small white-boards
- 3.2 Polynomial Division
- 3.3 Factor Theorem
- 3.4 Polynomial Graphs

What's one thing you
want to remember
from this chapter?
Could be one of these, or something else.

Domain/range of graph
Function or not?
Creating mapping notation
Listing changes and finding image point

Graphing something with several transformations

Graphing the inverse of graph
Finding the equation of the inverse

Warm-up, 3.1 - use small white-board

$f(x)=x^{4}-4 x^{3}+2 x^{2}+x+4$

1. Degree $=4$
2. Leading coefficient $=\quad+1$
3. End behavior $=\uparrow Q 2 \uparrow Q 1$
4. Possible number of x-intercepts $=$
5. value of y-intercept $=(0,4)$
6. domain $=\{x \mid x \in \mathbb{R}\}$
7. range $\begin{aligned}= & \text { must graph it to know. } \\ & \{y \mid y \geq-4.49, y \in \mathbb{R}\}\end{aligned}$
3.2 The Remainder Theorem Long division

Ways to write the result:	Check:	
$253 \div 6$	$=42$, remainder 1	
$\frac{253}{6}$	$=42$, remainder 1	(Divisor)(Quotient) + Remainder $=$ Dividend $(6)(42)+1$ $=253$
$\frac{253}{6}$	$=42+\left(\frac{1}{6}\right)$	

Using long division to divide a polynomial by a binomidt $9 x-27$
divide $x^{3}-12 x^{2}-42$ by $x-3$ divisor

1) if dividend isn't in descending order, re-onganize it!
2) if any degree isn't in the dividend, include it by putting it in with a O coefficient

Check:
(Divisor)(Quotient) + Remainder $=$ Dividend (6)(42) +1
$=253$

Express the result in the form $\frac{P(x)}{x-a}=Q(x)+\frac{R^{2}}{x-a} \longleftarrow$ divisor
What restrictions are there on the variable?
Verify (check) your answer.
we don's

$$
\frac{x^{3}-12 x^{2}-42}{x-3}=x^{2}-9 x-27+\frac{-123}{x-3}
$$

try to divide

$$
\begin{gathered}
(\text { Dinsor })(\text { Quoting })+\text { Remandre } \\
(x-3)\left(x^{2}-9 x-27\right)+-123 \\
x^{3}-9 x^{2}-27 x-3 x^{2}+27 x+81+-123
\end{gathered}
$$ by 0)

$$
=\text { Dividend }
$$

$$
(x-3)\left(x^{2}-9 x-27\right)+-123 \stackrel{?}{=} \quad x^{3}-12 x^{2}-42
$$

$$
\begin{align*}
& \text { The result of dividing a polynomial } P(x) \text { by a binomial of the form } x-a \text { is: } \\
& \frac{P(x)}{x-a}=Q(x)+\frac{R}{x-a} \text {, where } \quad Q(x) \text { is the quotient and } R \text { is the remainder. } \\
& \text { Check: } P(x)=(x-a) Q(x)+R \\
& \text { ortginat polynomial }=(\text { divisor })(\text { quotient })+\text { remainder } \\
& \text { aa) Divide the polynomial } 5 x^{3}+3 x^{2}-12 \\
& \text { by } x+2 \text { using long division. } \\
& \text { Express the result in the form } \\
& \frac{P(x)}{x-a}=Q(x)+\frac{R}{x-a} \\
& x + 2 \longdiv { 5 x ^ { 2 } - 7 x + 1 4 } \sqrt { 5 x ^ { 3 } + 3 x ^ { 2 } + 0 x - 1 2 } \\
& -\left(5 x^{3}+10 x^{2}\right)! \\
& -7 x^{2}+0 x \\
& -\left(-7 x^{2}-14 x\right) \\
& 14 x-12 \\
& \frac{-(\overline{14 x}+28)}{-40} \\
& \frac{5 x^{3}+3 x^{2}-12}{x+2}=5 x^{2}-7 x+14+\frac{-40}{x+2} \\
& \text { b) What restrictions are one the variable? } \\
& X \neq-2 \quad\left(\begin{array}{r}
\text { (comes from the } \\
\text { divisor } 1)
\end{array}\right. \\
& \text { c) Write the statement that can be } \\
& \text { used to check the division. } \\
& 5 x^{3}+3 x-12=(x+2)\left(5 x^{2}-7 x+14\right)+-40 \\
& \text { d) Verify youranswer } \\
& (x+2)\left(5 x^{2}-7 x+14\right)+-40 \\
& =5 x^{3}-\underline{7 x^{2}}+14 x+\underline{10 x^{2}}-14 x+28+40 \\
& =5 x^{3}+3 x^{2}-12 \\
& \text { 2. Divide the polynomial } 5 x^{3}+3 x^{2}-12 \\
& \text { by } x+2 \text { using synthetic division. } \\
& \text { Express the result in the form } \\
& \frac{P(x)}{x-a}=Q(x)+\frac{R}{x-a} \\
& 5 x^{2}-7 x+14+\frac{-40}{x+2}
\end{align*}
$$

Pre-Calc 12 - Unit 1

$$
=2 x^{3}-3 x^{2}+4 x+6 x^{2}-9 x+12+-10
$$

$$
2 x^{2}-3 x+4
$$

remainder $=-10$

$$
=2 x^{3}+3 x^{2}-5 x+2
$$

\checkmark
\$ Find the value of $P(-3)$, for $P(x)=2 x^{3}+3 x^{2}-5 x+2$.

$$
\begin{aligned}
P(-3) & =2(-3)^{3}+3(-3)^{2}-5(-3)+2 \\
& =2(-27)+3(9)+15+2=-10
\end{aligned}
$$

Remainder Theorem:
When a polynomial, $P(x)$, is divided by a binomial, $x-a$, the remainder is $P(a)$.
If $P(a)=0$, then the binomial $x-a$
is a factor of $P(x)$.
If $P(a) \neq 0$, then the binomial $x-a$ is not a factor of $P(x)$.

Example
a) Use the Remainder Theorem to find the remainder when $P(x)=8 x^{3}+4 x^{2}-19$ is divided by $x+2$ How do we do it?
evaluate $P(-2)=8(-2)^{3}+4(-2)^{2}-19$
b) Check your answer by using synthetic division.
(x+2)

c) Use the Remainder Theorem to find the remainder when $P(x)=8 x^{3}+4 x^{2}-19$ is divided by $x-1$.
evaluate $P(1)=8(1)^{3}+4(1)^{2}-19$

$$
\begin{aligned}
& =8+4-19 \\
& =12-19
\end{aligned}
$$

TB, p 124
6. Use the remainder theorem to determine

Table of $P(x)$

x	y
1	-7

7. Determine the remainder resulting from
8. Use the remainder theorem to determine the remainder when each polynomial is divided by $x+2$.
a) $x^{3}+3 x^{2}-5 x+2$
b) $2 x^{4}-2 x^{3}+5 x$
c) $x^{4}+x^{3}-5 x^{2}+2 x-7$
d) $8 x^{3}+4 x^{2}-19$
e) $3 x^{3}-12 x-2$
f) $2 x^{3}+3 x^{2}-5 x+2$
9. Determine the remainder resulting from each division.
a) $\left(x^{3}+2 x^{2}-3 x+9\right) \div(x+3)$
b) $\frac{2 t-4 t^{3}-3 t^{2}}{t-2}$
c) $\left(x^{3}+2 x^{2}-3 x+5\right) \div(x-3)$
d) $\frac{n^{4}-3 n^{2}-5 n+2}{n-2}$
10. For each dividend, determine the value of k if the remainder is 3.
a) $\left(x^{3}+4 x^{2}-x+k\right) \div(x-1)$
c) $\left(x^{3}+k x^{2}+x+5\right) \div(x+2)$
d) $\left(k x^{3}+3 x+1\right) \div(x+2)$

Bb) $x^{3}+x^{2}+k x-15 \div x-2$ gives a remainder of 3 We know that $P(z)=3$, from the remainder theorem.

$$
\begin{array}{r}
p(2)=2^{3}+2^{2}+k(2)-15=3 \\
8+4+2 k-15=3 \\
12+2 k-15=3 \\
2 k-3=3 \\
+3
\end{array}
$$

$$
\begin{aligned}
& \frac{2 k}{2}=\frac{6}{2} \\
& k=3
\end{aligned}
$$

So far we've learned:

- How to tell what type of degree/leading coefficient a polynomial has, from its graph
- How to divide a polynomial by a binomial using long division or synthetic division
- How to find the remainder WITHOUT actually doing the division:
- If we divide by $\mathrm{x}-\mathrm{a}$, the remainder is equal to $\mathrm{P}(\mathrm{a})$

even

3.3

The Factor Theorem

Focus on...

- factoring polynomials
- explaining the relationship between the linear factors of a polynomial expression and the zeros of the corresponding function
- modelling and solving problems involving polynomial functions

Each year, more than 1 million intermodal containers pass through the Port of Vancouver. The total volume of these containers is over 2 million twenty-foot equivalent units (TEU). Suppose the volume, in cubic feet, of a 1-TEU container can be approximated by the polynomial function $V(x)=x^{3}+7 x^{2}-28 x+20$, where x is a positive real number. What dimensions, in terms of x, could the container have?

Did You Know?
An intermodal container is a standard-sized metal box that can be easily transferred between different modes of transportation, such as ships, trains, and trucks. A TEU represents the volume of a $20-\mathrm{ft}$ intermodal container. Although container heights vary, the equivalent of 1 TEU is accepted as $1360 \mathrm{ft}^{3}$.

If our goal is to factor a POLYNOMIAL completely, it helps us to know which BINOMIALS might possibly be factors.

Factor completely:
$x^{3}-4 x^{2}+x+6$

3.3 The Factor Theorem

For each binomial below, find the remainder when $P(x)=x^{3}-4 x^{2}+x+6$ is divided by the binomial. Which of the following binomials are factors of $P(x)=x^{3}-4 x^{2}+x+6$?

f) $x-3$

Factor Theorem: $x-a$ is a factor of a polynomial, $P(x)$, if and only if $P(a)=0$

Example

Consider the polynomial: $P(x)=x^{3}+7 x^{2}-28 x+20$.
a) Given that $\underbrace{P(-10)=0}$, what binomial must be a factor of $P(x)$?
$x+10$ is a factor
b) Factor $P(x)$ completely.

Use either synthetic or long divisor of divide:

$$
\begin{aligned}
& \frac{x^{2}-3 x+2}{x+10} \begin{aligned}
& x^{3}+7 x^{2}-28 x+20 \\
&-\left(x^{3}+10 x^{2}\right) \\
&-3 x^{2}-28 x \\
& \frac{-\left(-3 x^{2}-30 x\right)}{2 x+20} \\
& \frac{-(2 x+20)}{0}
\end{aligned} \\
& \begin{aligned}
P(x) & =x^{3}-7 x^{2}-28 x+20 \\
& =(x+10)\left(x^{2}-3 x+2\right) \\
& =(x+10)(x-2)(x-1)
\end{aligned} \\
& =
\end{aligned}
$$

$$
\underline{\underline{\partial R}}
$$

Integral Zero Theorem:

If $x-a$ is a factor of a polynomial with integral coefficients, $P(x)$, then a must divide evenly into the constant term of the polynomial $P(x)$.

You can use a calculator's graphing table to quickly find factors of a polynomial:

You need to be able to show how you can calculate the remainder, using substitution into $\mathrm{P}(\mathrm{x})$. However, it's good to know this, too:

If you look at the table of values for the polynomial, it shows you what

If you look at the table of values for the polynomial, it shows you what $P(x)$ is for specific x-values.

x	$x^{3}-4 x^{2}+x+6$
-2	-20
-1	0
0	6
1	4
2	0
3	0
4	10
5	36

Example

Factor fully without using technology: $2 x^{3}-5 x^{2}-4 x+3$
a) According to the integral zero theorem, which values could possibly give factors of this polynomial?

$$
1,-1,3,-3
$$

(orly the number that are factors of the constant, 3)
b) Use the remainder and factor theorems to find a factor.

$$
\left.\begin{array}{rl}
P(-1) & =2(-1)^{3}-5(-1)^{2}-4(-1)+3 \\
& =-2-5(1)+4+3 \\
& =-2-5+7 \\
& =0
\end{array}\right\} x+1
$$

c) Use either long division or synthetic division to divide $2 x^{3}-5 x^{2}-4 x+3$ by the factor
found in part (b).

$$
\begin{aligned}
& \text { found in part (b). } 2 x^{2}-7 x+3 \\
& \qquad \begin{array}{r}
\frac{2 x^{3}-5 x^{2}-4 x+3}{-\left(2 x^{3}+2 x^{2}\right)} \\
\frac{-7 x^{2}-4 x}{\left.-7 x^{2}-7 x\right)} \\
3 x+3
\end{array}
\end{aligned}
$$

d) What is the fully factored form of $2 x^{3}-5 x^{2}-4 x-3$?

$$
P(x)=(x+1)(x-3)(2 x-1)
$$

$$
P(x)=(x+1)\left(\begin{array}{ccc}
\frac{-(3 x+3)}{D} \\
\frac{2 x^{2}-7 x+3}{} & \uparrow \quad \uparrow \\
A & B & C
\end{array} \quad \begin{array}{l}
\text { Decomp } \quad A C=2(3) \\
=6 \\
\text { ult }=6 \\
\text { add to } B=-7
\end{array}\right\}-6,-1
$$

$2 x^{2}-6 x-1 x+3$
e) Consider the equation $2 x^{3}-5 x^{2}-4 x+3=0$, what are the solutions to this equation? $(x-3)(2 x-1)$
f) Graph $2 x^{3}-5 x^{2}-4 x+3$ on a graphing calculator. Find the values of its x-intercepts.

```
du
    1) Grapn }2x-5x-4x+5\mathrm{ on a graphing calculator. Find the values or its }x\mathrm{ -intercepis.

\section*{To factor fully:}
1) Look at the constant to see which numbers are worth trying. Only numbers that divide evenly into the constant term are possibilities.
2) When we get \(P(a)=0\), for some value, that means \(x-a\) is a factor.
3) Do the division, either by long division or synthetic division:
\[
\frac{P(x)}{x-a}=Q(x)
\]
4) The quotient you get will be of smaller degree than the original polynomial. Often, the original polynomial is degree 3, so the quotient will be of degree \(\mathbf{2}\) and you can (hopefully) easily factor that. This means you would have something like this:
\[
\begin{aligned}
P(x) & =(x-a) Q(x) \\
& =(x-a)(\quad)(\quad)
\end{aligned}
\]

Textbook, page 131 - try this one!

\section*{Your Turn}

What is the fully factored form of \(x^{4}-3 x^{3}-7 x^{2}+15 x+18\) ?
\[
\text { to try: } \pm 1,18,2,9,3,6
\]
\[
\begin{aligned}
P(1) & =1^{4}-3(1)^{3}-7(1)^{2}+15(1)+18 \\
& =1-3-7+15+18 \\
& =24
\end{aligned}
\]
\[
\left.\begin{array}{rl}
P(-1) & =(-1)^{4}-3(-1)^{3}-7(-1)^{2}+15(-1)+18 \\
& =1-3(-1)-7(1)+-15+18
\end{array}\right\} \quad \Rightarrow \quad x+1 \text { is a factor }
\]
\[
=1+3-7-15+18
\]
\[
=0
\]

```

 This is a cubic. We need th factor it. Notice the constant
 is still 18, and we already know P(1)}\not=0\mathrm{ . (If it wasn't
 a factor of the quartir, it can't be of the cubic, either.)
 P(2) = 23-4(2\mp@subsup{)}{}{2}-3(2)+18 * I'm plugging inte the cubic now,
=8-4(4)-6+18
=8-16-6 +18 because it's a bit easier
=4
to work with
P(-2)=(-2)}\mp@subsup{)}{}{3}-4(-2\mp@subsup{)}{}{2}-3(-2)+1
=-8-4(4)+6+18

```


If you have a graphing calculator available, remember this can help:

\section*{Graph the polynomial}

Look at the table of values. Anywhere \(y=0\) there is an \(x\)-intercept.
Each x-intercept will tell us a factor of the polynomial.
\begin{tabular}{c|c}
\(x\) & \(y\) \\
-2 & 0 \\
-1 & 0 \\
3 & 0
\end{tabular}
\[
\begin{array}{r|rrr}
2 & \begin{array}{cccc}
1 & -4 & -3 & 18 \\
- & 1 & 2 & -12
\end{array} & 18 \\
\hline & \underbrace{1}_{x^{2}-6 x+9}-6 & 9 & 10
\end{array}
\]
\[
\begin{aligned}
& \text { So, our original polynomial has factored into: } \\
& \qquad(x+1)(x+2)\left(x^{2}-(x+9)\right.
\end{aligned}
\]
\[
\Gamma_{\text {let's factor this }, ~ t w o . ~}^{\text {. }}
\]
\[
=(x+1)(x+2)(x-3)(x-3)
\]
\[
\text { OR } \quad(x+1)(x+2)(x-3)^{2}
\]
If we graph, we have:
\[
x \text {-intruph } x=-1
\]
\[
x=-2
\]
\[
\begin{aligned}
& x=-2 \\
& x=3(\text { rep c chs })
\end{aligned}
\]

\[
y \text {-int. }=(0,18)
\]
\[
x^{4}-3 x^{2}-7 x^{2}+15 x+18 \text { EVEN, TQ2 1Q1 }
\]

\section*{For next class}

Hand-in Assignment- work on the Chapter 3 Hand-in, try to do \#1-7 and maybe even \#8.

\section*{More Practice}
- TB (3.1) p 114: 1-3, 4ace, 6, 7, 9
- TB (3.2) p 124: 1-2, Ba, 4c, 5b, 6-8
- TB (3.3) p 133: 1-4, Face, 7bd, 9, 11

\section*{http://www.mathsisfun.com/algebra/polynomials-division-long.html}

For two more examples on how to do polynomial long division, watch part of this video:
https://www.youtube.com/watch?v=16 ghhd7kwQ
- the first 3:42 of the video
- the example from 6:15-9:54 of the video
(The example in the middle of the video is a type of question we will not do in our class.)

Start preparing for Unit 1 Test (Chapters 1 and 3) on Thursday, September 29

\section*{Test format:}

\section*{Around 40 marks possible}

About 10 multiple-choice questions, the rest written questions.```

