Tonight's Class:

- Chapter 1 Test Return
- Any questions from 2.1-2.2?
- Working through sections 2.2 and 2.3
- Adding and subtracting radicals (continued)
- Multiplying and dividing radicals

$$
\text { p96, } 48 d \quad \begin{aligned}
\sqrt[3]{\frac{-48^{\div 2}}{54^{\div 2}}} & =\sqrt[3]{\frac{-24^{\div 3}}{27^{\div 3}}} \\
& =\sqrt[3]{\frac{-8}{9}} \\
& =\frac{\sqrt[3]{-8}}{\sqrt[3]{9}} \\
& =\frac{-2}{\sqrt[3]{9}}=-2 \cdot \sqrt[3]{\frac{1}{9}} \\
& =-2 \sqrt[3]{\frac{3}{9}}=\frac{-2 \cdot 1}{\sqrt[3]{9}}
\end{aligned}
$$

$$
\text { e) } \sqrt[3]{\frac{-27 m^{8}}{16}} \longrightarrow \sqrt[3]{\frac{-27 m^{6} \cdot m^{2}}{8 \cdot 2}}=\frac{-3 m^{2}}{2} \sqrt[3]{\frac{m^{2}}{2}}
$$

0 ind index

$$
r_{1} \ldots
$$

(Determine the radii of sphere C and sphen D, in toms of A.

Surface are of
sphere $A=4 \pi r^{2}$
sphere C, its surface area $=2 \mathrm{~A}$

Summary:

If the index is even, variables in the radicand that have an ODD exponent will be defined only in some places, not for all real numbers.

- By "some places" I mean either for values ≥ 0, or, sometimes, for values ≤ 0

> You mas subtract
> radicals that
> have the same
> index and same radicand.
> If this is the case,
> subtract the
> coefficients and
> keep the
> radicand the

WT, page 104
Example 2
Simplifying Expressions with Variable Radicands
then simplify.
a) $5 \sqrt{x}+3 \sqrt{x}-4 \sqrt{x}$
a) $x \geq 0 \quad(5+3-4) \sqrt{x}=4 \sqrt{x}$
b) $\sqrt{25 a^{2} b}+\sqrt{4 a^{2} b}$
c) $\sqrt[4]{81 p^{3} q^{5}}-2 \sqrt[4]{p^{3} q^{5}}$
b) $a \in \mathbb{R}, b \geq 0$
$\sqrt{25 a^{2} b}+\sqrt{4 a^{2} b}$

$$
=\sqrt{25 a^{2} \cdot b}+\sqrt{4 a^{2}-b}
$$

$$
=5|a| \sqrt{b}+2 \mid a \sqrt{b}
$$

c) $\sqrt[4]{8\left(p^{3} q^{5}\right.}-2 \sqrt[4]{p^{3} q^{5}}$

$$
=\text { Ta } \sqrt{b}
$$

$$
\begin{aligned}
& \prod_{p \geq 0}^{p} \quad q \geq 0 \\
& =\sqrt[4]{81 q^{4} \cdot p^{3} \cdot q}-2 \sqrt[4]{q^{4} \cdot q p^{3}}
\end{aligned}
$$

$=3\left(\sqrt[4]{P^{2} 2}\right)-2 \cdot 2 \cdot\left(\sqrt[3]{p^{2}}\right)$
$=|2|^{4} P^{2} \quad C+4 . p^{10+}$

WT, page 105

Example 3 Simplifying with More than One Set

 of Like TermsSimplify.
a) $2 \sqrt{x}-3 \sqrt{y}+5 \sqrt{x}+2 \sqrt{y}, x, y \geq 0$
b) $8 \sqrt[3]{2 x}+7 \sqrt{2 x}-5 \sqrt[3]{2 x}+1 \sqrt{2 x}, x \geq 0$
c) $5 \sqrt{8 x^{3}}+4 y \sqrt{75 y^{3}}-2 \sqrt{27 y^{5}}-3 x \sqrt{50} x, y \geq 0$
a) $7 \sqrt{x}-3 \sqrt{y}+2 \sqrt{y}=7 \sqrt{x}-\sqrt{y}$
b) $3 \sqrt[3]{2 x}+8 \sqrt{2 x}$
c) $5 \sqrt{8 x^{3}}+4 y \sqrt{75 y^{3}}-2 \sqrt{27 y^{5}}-3 x \sqrt{50 x}$

$$
\begin{aligned}
& =5 \sqrt{4 \cdot 2 \cdot\left(x^{3} \cdot x\right.}+4 y \sqrt{25 \cdot 3 \cdot y^{2} \cdot y}-2 \sqrt{9 \cdot 3 \cdot y^{4} \cdot y}-3 x \sqrt{25 \cdot 2 \cdot x} \\
& =5 \cdot 2 \cdot x \sqrt{2 x}+4 y \cdot 5 \cdot y \sqrt{3 y}-2 \cdot 3 \cdot y^{2} \sqrt{3 y}-3 x \cdot 5 \sqrt{2 x} \\
& =10 x \sqrt{2 x}+20 y^{2} \sqrt{3 y}-6 y^{2} \sqrt{3 y}-15 x \sqrt{2 x} \\
& =(10 x-15 x) \sqrt{2 x}+\left(20 y^{2}-6 y^{2}\right) \sqrt{3 y} \\
& =-5 x \sqrt{2 x}+14 y^{2} \sqrt{3 y}
\end{aligned}
$$

Recap 5 - try it now

Precap 6

2.3 Multiplying and Dividing Radical Expressions

Focus: simplify products and quotients of radical expressions

Multiply Radicals

1. Multiply the coefficients.
2. Multiply the numbers inside the radicals.
3. Simplify.

Example:

Examples
1)

$$
\begin{aligned}
\sqrt{6} \times \sqrt{2} & =\sqrt{12} \\
& =\sqrt{4 \cdot 3} \\
& =2 \sqrt{3}
\end{aligned}
$$

3)

$$
\begin{aligned}
& 4 \sqrt{3 x z} \cdot 5 \sqrt{6 x y^{2}} \\
= & 20 \sqrt{3 x z \cdot 6 x y^{2}} \\
= & 20 \sqrt{18 x^{2} y^{2} z} \\
= & 20 \sqrt{9 \cdot 2 \cdot x^{2} \cdot y^{2} \cdot z} \text { simplitg } \\
= & 20 \cdot 3 x y \sqrt{2 z}=60 x|y| \sqrt{2 z}
\end{aligned}
$$

$$
\text { 1) } \begin{aligned}
& \sqrt{6}(\sqrt[3]{8}+\sqrt{12}) \\
= & \sqrt{48}+\sqrt{72} \\
= & \sqrt{16-3}+\sqrt{36-2} \\
= & 4 \sqrt{3}+6 \sqrt{2}
\end{aligned}
$$

2) $3 \sqrt{6} \times 5 \sqrt{3}$

$$
\begin{aligned}
& =15 \sqrt{18} \\
& =15 \sqrt{9 \cdot 2} \\
& =15 \cdot 3 \sqrt{2} \\
& =45 \sqrt{2}
\end{aligned}
$$

simplity.
Example:

$$
\begin{array}{ll}
\sqrt{6} \times \sqrt{15} & 3 \sqrt{2} \times 5 \sqrt{6} \\
=\sqrt{6 \times 15} & =3 \times 5 \sqrt{2 \times 6} \\
=\sqrt{90} & =15 \sqrt{12} \\
=\sqrt{9 \times 10} & =15 \sqrt{2 \times 2 \times 3} \\
=3 \sqrt{10} & =15 \times 2 \sqrt{3} \\
& =30 \sqrt{3}
\end{array}
$$

$$
\begin{aligned}
& -3 \sqrt{12}(5 \sqrt{3}-T \sqrt{6}) \\
= & -15 \sqrt{36}+12 \sqrt{72} \\
= & -15 \cdot 6+12 \sqrt{36 \cdot 2} \\
= & -90+12 \cdot 6 \sqrt{2} \\
= & -90+72 \sqrt{2}
\end{aligned}
$$

$$
=4 \sqrt{10}+4 \sqrt{5}+3 \sqrt{20}+3 \sqrt{10}
$$

$$
=7 \sqrt{10}+4 \sqrt{5}+3 \sqrt{4 \cdot 5}
$$

$$
=7 \sqrt{10}+4 \sqrt{5}+\underbrace{3 \cdot 2 \sqrt{5}}
$$

$$
=7 \sqrt{10}+4 \sqrt{5}+6 \sqrt{5}
$$

$$
=7 \sqrt{10}+10 \sqrt{5}
$$

$$
\begin{aligned}
(3 \sqrt{x}-\sqrt{y})^{2} & =(3 \sqrt{x}-\sqrt{y})(3 \sqrt{x}-\sqrt{y}) \\
& =9 \sqrt{x^{2}}-3 \sqrt{x y}-3 \sqrt{x y}+\sqrt{y^{2}} \\
& =9 x-6 \sqrt{x y}+y
\end{aligned}
$$

Next time, we'll look at
"rationalizing the denominator"

For next class

- Finish worktext questions for 2.2 and the multiplication ones only, from 2.3

