Class_06 May 11 Trig and Angles
Thursday, May 11, 2023

Tonight's Class
Earthquake Preparedness
Accessing Checkmyprogress
Chapter 3 questions?
Starting Trigonometry (4.0-4.1)

You can check the progress for FRame LName at cmm.sd35.bc.ca using the Last Name LName and password StPassword.

Welcome to Checkmyprogress

© Checkmyprogress
wat in e
Savemiverent
uncrown

Chapter 3 Questions?

Trigonometry - chapters 4,5 and 6
What do you think of when you hear the word "trigonometry"?

Law

Trigonometry and the Unit Circle Have you ever wondered about the repeating patterns that occur around us? Repeating patterns occur in sound, light, tides, time, and molecular motion. To analyse these repeating, cyclical
patterns, you need to move from using ratios in triangles to using circular functions to approach trigonometry.
In this chapter, you will learn how to model and solve trigonometric problems using the unit circle and circular functions of radian measures.

trig•o•nom•e•try

/, trig 'nämətrē/
noun
the branch of mathematics dealing with the relations of the sides and angles of triangles and with the relevant functions of any angles.

Chapter 4: Trigonometry and the Unit Circle

4.0 Trigonometry Review

Trigonometry is the study of triangles and trigonometric functions. First, we review some
trigonometry dealing with triangles.

Triangles

- have three angles, the measures add up tr 180
- longest side of triangle is across from the largest angle
- shortest side of a triangle is across from the smallest angle
- right triangles are triangles that have a right angle (90') hypotenuse is the longest side of a right triangle
- other sides of the triangle are often called legs
hypotenuse is always across from the right angle
in a right triangle, we can use the Pythagorean Theorem

If the two legs of a right triangle are called and b, and the hypotenuse is called c, then $a^{2}+b^{2}=c^{2}$.

Look at the right triangle shown below. The angle by point A is labeled with the Greek letter θ read "theta." Angles are very commonly labeled with the letter θ.
Which side is the hypotenuse? $=C$
Which side is opposite $\theta ?=a$
Which side is adjacent to $\theta=b$
next to

next to

When we know the lengths of the sides of a right triangle, we can calculate ratios that compare the lengths of two different sides.

First, we label the hypotenuse, and the sides that are opposite and adjacent to angle θ

There are six different ratios one can create. We'll leave the ratios in fractional form.
Sine $=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{5}{13} \quad\left(\begin{array}{c}\text { cosine adjacent } \\ \text { hypotenuse }\end{array}=\frac{12}{13} \underset{\text { fast opposite }}{\text { adjacent }}=\frac{5}{12}\right.$

These ratios are called the trigonometric ratios. Knowing them makes it possible to find the measure of each angle in the triangle.

Remember:
sin/csc are reciprocals
cos/sec are reciprocals
tan/cot are reciprocals

Pre-Cale $12-$ Unit 2 Page 3

Example Find the measure of each side and angle (correct to nearest degree) in the right triangle shown below.

You may also remember using Law of Sines and Law of Cosines to help solve triangles that are not right triangles.

The Law of Sines

$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$	$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Use to find ANGLES	Use to find sides

Law of Cosines

$a^{2}=b^{2}+c^{2}-2 b c \cdot \cos (A)$
$b^{2}=a^{2}+c^{2}-2 a c \cdot \cos (B)$
$c^{2}=a^{2}+b^{2}-2 a b \cdot \cos (c)$

There's much more to trigonometry than triangles.

(Notes package, page 3)
4.1 Angles and Angle Measure

Trigonometry does a lot more than solve triangles. It can be used to analyze many repeating patterns - things like sound, light, ocean tides, and circular motion.

We start by looking carefully at ANGLES. Remember, angles measure the space between two rays that meet at the vertex of the angle.

Angles in standard position

- Have the vertex at the origin $(0,0)$
- Have a specific direction of rotation, shown with an arrow.
- Have the initial arm on the positive x-axis
- Have the terminal arm either in one of the four quadrants, or on the x - or y-axis.

Wherever the terminal arm is, that's how we decide what to call an angle. Options are:

- First quadrant angle
- Second quadrant angle
- Third quadrant angle
- Fourth quadrant angle
- Quadrantal angle

positive angles start on the positive x-axis, and rotate counter-clockwise
negative angles start on the positive x-axis, and rotate clockwise

Coterminal Angles are

- different in size but
- terminate in the same place

Find another positive angle and another negative angle that are coterminal to the shown angles

Find two more angles
that are cotemind to 55°.
$775^{\circ}=55^{\circ}+\left(360^{\circ}\right)(2)$
$-665^{\circ}=55^{\circ}-\left(360^{\circ}\right)(2)$

General form for coterminal angles - this is an expression that generates ALL the angle that are coterminal to a specific angle. Here's how we write the angles coterminal to 55° in general form:

integer multiples of 360 :
one 360 ,
two $360^{\prime} \mathrm{s}$,
three $360^{\circ} \mathrm{s}$,
three 360^{\prime} s,
four 360^{\prime}. .
or
adding - 360 ,
or two -360^{\prime} 's,
three -360^{\prime} s,
three -360^{\prime} s,
(Not adding on a
portion of a full rotation.

- is the smallest angle formed between the terminal arm of θ and the x-axis

- is positive
- is "acute",

$$
90^{\circ}
$$

Try this

1. Draw each angle in standard position. (Estimate - you don't need to use a protractor.)
a) 110^{\prime}
Q^{2}

b) -40
2. Find a positive and a negative coterminal angle to the angle 160°,

$$
\begin{aligned}
& 160^{\circ}+360^{\circ}=520^{\circ} \\
& 160^{\circ}-360^{\circ}=-200^{\circ}
\end{aligned}
$$

3. Give the general expression for ALL angles coterminal to the angle $25 . \quad-4,-3,-2,-1,0,1,2,3, \ldots$.

$$
25^{\circ}+360^{\circ} n, n \in I^{\circ}
$$

4. Find the reference angle for each angle.
a) 235

b) 310
$235^{\circ}-180^{\circ}$ $=55^{\circ}$

$360^{\circ}-310^{\circ}$

$$
=70^{\circ}
$$

Another unit used to measure angles (besides degrees) is radians. We need to know how to work with radians, as they make some calculus questions much easier (and this is PreCalculus, after all!)

Try this
Sketch a standard position angle measuring: a) 1 radian

c) 3 radians

b) 6 radians

How many radians are in a full rotation? (Think about how many radius lengths will fit

$$
A=\pi r^{2}
$$ onto the full circumference of a circle.)

\square

$$
2 \pi \text { radians }=a \text { complete rotation }=360
$$

$$
C=2 \pi r
$$

$$
\pi \quad \text { radians }=a \text { straight angle }=180
$$

$$
\text { crromfonce }=(2 \pi) r
$$

$$
\approx 6.28-
$$

Ch ${ }^{3}$
$f\left(, s^{h} b<c k\right.$
A graph has these roots:
$x=2$, multiplicity of 1
$x=3$, multiplicity of 2
and it goes through this point: $(1,16)$
What is its equation?

$$
y=a(x-2)(x-3)^{2}
$$

Substitute in $x=1$, and $y=16$, to figure out " a "

$$
\begin{aligned}
& 16=a(1-2)(1-3)^{2} \\
& 16=a(-1)(-2)^{2} \\
& 16=a(-1)(4) \\
& \frac{16}{-4}=\frac{-4 a}{-y} \\
& a=-4 \quad y=-4(x-2)(x-3)^{2}
\end{aligned}
$$

Common Angles

Some angles are used so frequently that it is very helpful to simply KNOW their

$\pi=180^{\circ}$	$2 \pi=360^{\circ}$	$\frac{\pi}{2}=90^{\circ}$	$\frac{\pi}{3}=60^{\circ}$
$\frac{\pi}{4}=45^{\circ}$	$\frac{\pi}{6}=30^{\circ}$	$0=0^{\circ}$	$\frac{3 \pi}{2}=270^{\circ}$

Working with Radians in Fraction Form
Because π radians is the size of a straight angle (half a rotation), we end up working a lot with angles written as fractional parts of π. Let's review adding/subtracting fractions.

Try

Different Denominators

$\frac{2}{3}+\frac{1}{4}-\quad$			

$\frac{2}{3} \cdot \frac{4}{4}+\frac{1}{4} \cdot \frac{3}{3}$

$$
=\frac{8}{12}+\frac{3}{12}=\frac{11}{12}
$$

$\begin{array}{lll}\text { Try } & \frac{1}{2}+\frac{1}{3}=\frac{1}{2} \cdot \frac{3}{3}+\frac{1}{3} \cdot \frac{2}{2} & \text { b) } \frac{7}{6}+\frac{1}{4}=\frac{7}{6} \cdot \frac{2}{2}+\frac{1}{4} \cdot \frac{3}{3}\end{array} \quad$ c) $\frac{3}{5}+\frac{1}{7}=\frac{3}{5} \cdot \frac{7}{7}+\frac{1}{7} \cdot \frac{5}{5}$ $=\frac{3}{6}+\frac{2}{6}=\frac{5}{6} \quad=\frac{14}{2}+\frac{3}{12}=\frac{11}{12} \quad=\frac{21}{35}+\frac{5}{35}$

is π in the fraction? It still works the same way!

d) $\frac{42 \pi}{43}+\frac{\pi}{4} \frac{3}{3}=\frac{8 \pi}{12}+\frac{3 \pi}{12}=\frac{11 \pi}{12}$

$$
\text { d) } \frac{42 \pi}{43}+\frac{\pi}{4} \frac{3}{3}=\frac{8 \pi}{12}+\frac{3 \pi}{12}=\frac{11 \pi}{12}
$$

Standard-Position Angles in Radian Measure
A straight angle measures π radians. This helps us when A straight angle measures π radians. This helps us when sketching angles that are fractions involving π. \qquad 180°

For each angle below:

- Draw the angle in standard position.

cotermind $-\frac{2 \pi}{3}+2 \pi$

$$
=\frac{-2 \pi}{3}+\frac{2 \pi}{1} \cdot \frac{3}{3}
$$

$$
=-\frac{2 \pi}{3}+\frac{6 \pi}{3}=\frac{4 \pi}{3}
$$

another one: $\frac{4 \pi}{3}+\frac{6 \pi}{3}=\frac{10 \pi}{3}$

Quick Check-in
What is the size of each angle, in radian measure?

I don't understand why some people use fractions instead of decimals.

It's pointless.

$$
\begin{array}{r}
\text { Pre-Cale } 12 \text { - Unit } 2 \\
\text { Page } 10
\end{array}
$$

Arc Length

Suppose we have a circle with radius $=20 \mathrm{~cm}$. If we mark off a central angle measuring
80°, what arc length (length along the circle's circumference) does the angle cut off?

$\frac{80^{\circ}}{360^{\circ}}=\frac{a}{\text { Circumforen }} \quad C=2 \pi r$

$$
a=(20)\left(80^{\circ}\right) \cdot\left(\frac{\pi}{180^{\circ}}\right)
$$

$$
a \doteq 27.9 \mathrm{~cm}
$$

Suppose we have another circle, this one with diameter 9 cm . If we know that an are
Suppose we have another circle, this one with diameter 9 cm . If we know that an are
measuring 7 cm is subtended by a central angle, what is the measure of that central angle, measuring 7 cm is subtended by a central angle, what is the meas
in radians? What is the measure of the central angle, in degrees?

$$
\begin{aligned}
2 \pi \cdot\left[\frac{\theta}{2 \pi}\right] & =\left[\frac{7}{(2 \pi)(45)}\right] \cdot 2 \pi \\
\theta & =\frac{(7)(2 \pi)}{(2 \pi)(4.5)}
\end{aligned}
$$

$$
a=r \theta
$$

$$
\frac{7}{4.5}=\frac{4.5 \theta}{45}
$$

$$
\theta=\frac{7}{4.5} \pm 1.55 \text { radians }
$$

$$
\text { In degrees, } \begin{aligned}
\theta & =\frac{7}{4.5} \cdot \frac{180^{\circ}}{\pi} \\
& =89^{\circ}
\end{aligned}
$$

$$
\theta=\frac{7}{4.5} \doteq 1.55 \text { radians }
$$

$$
\text { Then, converting, we get } \begin{aligned}
\theta & =\left(\frac{7}{4.5}\right) \cdot\left(\frac{180^{\circ}}{\pi}\right) \\
& =89^{\circ}
\end{aligned}
$$

For next class:

Complete the Chapter 3 Hand-in Assignment - handing it in on Monday!
Complete questions from 4.0-4.1 on the Chapter 4 Hand-in Assignment
Prepare for the Week 2 Test (Chapter 3 and 4.0-4.1)

