Tonight's Class

Polynomial Graphs (3.4)

Starting Trigonometry (4.0-4.1)

You can check the progress for FName LName at cmm.sd35.bc.ca using the Last Name LName and password StPassword.

```
mbyy x @ Omemmogems x +
@ O O Fs htue/lonmsdasbccos
```



```
Wekome Login Classic
```

Welcome to Checkmyprogress
Teachers, students, and parents: please use the regular login
Case managers and admin: please use the classic page to login
Now may find it convenient to bookmark your login page)

```
< Orecmprogress }\times
```

 O A \(\mathrm{\sigma}^{\circ} \mathrm{https} / / \mathrm{cmm}\) sd35.bcca/program/e/login

© Checkmyprogress
User Type:
Student/Parent
District:
Last Name:

Example

Factor fully without using technology: $2 x^{3}-5 x^{2}-4 x+3$
a) According to the integral zero theorem, which values could possibly give factors of this polynomial? $1,-1,3,-3$ (only the numbers that constant, 3)
b) Use the remainder and factor theorems to find a factor.
$P(-1)=2(-1)^{3}-5(-1)^{2}-4(-1)+33$
b) Use the remainder and factor theorems to find a factor.

$$
\left.\begin{array}{rl}
P(-1) & =2(-1)^{3}-5(-1)^{2}-4(-1)+3 \\
& =-2-5(1)+4+3 \\
& =-2-5+7 \\
& =0
\end{array}\right\} x+1
$$

c) Use either long division or synthetic division to divide $2 x^{3}-5 x^{2}-4 x+3$ by the factor
found in part (b).

$$
\begin{aligned}
& \begin{array}{r}
x+1 \begin{array}{r}
2 x^{2}-7 x+3 \\
\frac{2 x^{3}-5 x^{2}-4 x+3}{-\left(2 x^{3}+2 x^{2}\right)} \\
\frac{-7 x^{2}-4 x}{\left.-7 x^{2}-7 x\right)} \\
-\frac{(3 x+3)}{0}
\end{array}
\end{array} \\
& P(x)=(x+1) \frac{\left(2 x^{2}-7 x+3\right)}{\hat{\lambda} \hat{\beta}_{B} \hat{C}}
\end{aligned}
$$

x+1)

d) What is the fully factored form of $2 x^{3}-5 x^{2}-4 x+3$?

$$
P(x)=(x+1)(x-3)(2 x-1)
$$ $\left.\begin{array}{ll}\text { Decomposition } & A C=2(3)=6 \\ \text { method: } & \text { sum }=-7 \\ \text { mut }=6 & \\ \text { add to } B=-7\end{array}\right\}-6,-1$ $\left.\begin{array}{ll}\text { method: } & A C=2(3)=6 \\ \text { mut }=6 \\ \text { add to } B=-7\end{array}\right\}-70-1$

$$
\begin{aligned}
& 2 x^{2}-7 x+3 \\
= & 2 x^{2}-6 x-1 x+3 \\
= & 2 x(x-3)-1(x-3) \\
= & (x-3)(2 x-1)
\end{aligned}
$$

e) Consider the equation $2 x^{3}-5 x^{2}-4 x+3=0$, what are the solutions to this equation?

$$
\begin{array}{cc}
(x+1)(x-3)(2 x-1)=0 \\
y & 2 x-1=0 \\
x+1=0 & x-3=0
\end{array}
$$

f) Graph $2 x^{3}-5 x^{2}-4 x+3$ on a graphing calculator. Find the values of its x-intercepts.

$$
\begin{aligned}
& x=-1 \\
& x=0.5=1 / 2
\end{aligned}
$$

$$
y=2 x^{3}-5 x^{2}-4 x+3
$$

3.4 Equations and Graphs of Polynomial Functions

As we just saw, the solutions of an equation match up with the x-intercepts of the graph.

Example
a) Graph the function $f(x)=x^{4}+x^{3}-10 x^{2}-4 x+24$ using graphing technology. What are its x-intercepts? $\quad x=-3, \quad x=-2, \quad x=2$
$x-$ intercept $\left(-\right.$, b) Use the results from part (a) to help fully factor $f(x)=x^{4}+x^{3}-10 x^{2}-4 x+24$.

\Rightarrow now $x+3$ and $x-2$ are factors.

Use one of them t divide the ongsind polynomial, + help us freon

it.

| $x+3$ | 3 | 1 | 10 | -4 | 24 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
\begin{aligned}
& \frac{x^{3}-2 x^{2}-4 x+8}{\begin{array}{l}
\text { Use } \\
\text { either } \\
\text { hind } \\
\text { dins inn }
\end{array}} \\
& x+3 \sqrt{x^{4}+x^{3}-10 x^{2}-4 x+24} \\
& \frac{\left(x^{4}+3 x^{3}\right)}{}
\end{aligned}
$$

$$
\frac{-\left(x^{4}+3 x^{3}\right)}{-2 x^{3}-10 x^{2}}
$$

$$
x^{3}-2 x^{2}-4 x+8
$$

$$
\frac{-\left(-2 x^{3}-6 x^{2}\right)}{-4 x^{2}-4 x}
$$

$$
f(x)=(x+3)\left(x^{3}-2 x^{2}-4 x+8\right)
$$

$$
\frac{-\left(-4 x^{2}-12 x\right)}{8 x+24}
$$

$$
\frac{8 x+2 y}{0}
$$

(x+2) | 2 | 1 | -2 | -4 | 8 |
| :---: | :---: | :---: | :---: | :---: |
| - | 1 | -2 | -8 | 8 |
| x | 1 | -4 | 4 | 0 |

$$
x+2 \sqrt{\frac{x^{2}-4 x+4}{x^{3}-2 x^{2}-4 x+8}} \frac{-\left(x^{3}+2 x^{2}\right)}{-4 x^{2}-4 x}
$$

$$
f(x)=(x+3)(x+2)\left(x^{2}-4 x+4\right)
$$

$$
-\left(-4 x^{2}-8 x\right)
$$

$$
4 x+8
$$

$$
\begin{aligned}
& f(x)=(x+3)(x+2)(x-2)(x-2) \\
& f(x) \text { what are the solutions to the equation: }
\end{aligned}
$$

$$
\frac{-(4 x+8)}{0}
$$

$$
\zeta f(x)=(x+3)(x+2)(x-2)^{2}
$$

Example
Factor completely, then analyze and sketch the graph of this polynomial function without using technology:

$$
f(x)=x^{3}+3 x^{2}-6 x-8
$$

1) List possible zeros (using the integral zee therm) - $\pm 1,2,4,8$
2) Show using the rensinde theorem whet is are of the factors.

$$
\begin{array}{rlrl}
f(1) & =1^{3}+3(1)^{2}-6(1)-8 & f(-1) & =(-1)^{3}+3(-1)^{2}-6(-1)-8 \\
& =1+3-6-8 & & =0 \\
& =-10 & & \Rightarrow x+1 \text { is a factor }
\end{array}
$$

3) Divide, whichever method yo prefer.

(x+1) \begin{tabular}{l}

$1 |$| 1 | 3 | -6 | -8 |
| :--- | :--- | :--- | :--- |
| \downarrow | 1 | λ^{2} | $ح^{-8}$ |
| $x^{2}+2 x-8$ | | | |

| 1 | 2 |
| :--- | :--- |-8

\hline
\end{tabular}

$$
\begin{array}{r}
\frac{x^{2}+2 x-8}{x + 1 \longdiv { x ^ { 3 } + 3 x ^ { 2 } - 6 x - 8 }} \begin{array}{r}
-\left(x^{3}+x^{2}\right) \\
\frac{-\left(2 x^{2}-6 x\right.}{\left.2 x^{2}+2 x\right)} \\
\frac{-(-8 x-8)}{0}
\end{array}
\end{array}
$$

4)

$$
\begin{aligned}
& f(x)=(x+1)\left(x^{2}+2 x-8\right) \\
&=(x+1)(x-2)(x+4) \\
& \searrow_{x=-1} \quad b=2 \quad y_{x=-4}
\end{aligned}
$$

Degree	3	$($ odd $)$
Leading coefficient	1	(t)
End behavior	$\downarrow Q 3 \uparrow Q 1$	
Zeros x-intercepts	$(-4,0)(-1,0) \quad(2,0)$	
y-intercept	$(0,-8)$	
Interval (s) where function is positive or negative		
positive $-4<x<-1$, negative$\quad x<-4,-1<x<2$		
ne x		

1) plot x-interap b
2) plot y intercept

x	y
-3	10
-2	8
1	-10

Whiteboards
Factor and sketch: $\quad f(x)=-x^{4}-2 x^{3}+7 x^{2}+8 x-12$

1) possibilities: $\pm 1,12,2,6,3,4$
2) try to find one: $f(1)=-\left(1^{4}\right)-2(1)^{3}+7(1)^{2}+8(1)-12$

$$
\begin{aligned}
& =-1-2+7+8-12 \\
& =0 \quad \Rightarrow \quad x-1 \text { is a factor }
\end{aligned}
$$

3) divide: x-1 $-1 \left\lvert\, \begin{array}{rrrrr}-1 & -2 & 7 & 8 & -12 \\ 1 & 3 & -4 & -12\end{array}\right.$
4) divide: (x-1 $-1 \left\lvert\, \begin{array}{ccccc}-1 & -2 & 7 & 8 & -12 \\ 1 & 3 & -4 & -12 \\ \left\lvert\, \begin{array}{lllll}-1 & -3 & 4 & 12 & 0\end{array}\right. \\ -\underbrace{}_{-x^{3}}-3 x^{2}+4 x+12\end{array}\right.$

$$
\begin{aligned}
& \begin{array}{l}
\text { What } \\
\text { misht } \\
\text { workher? let's try } x=-1
\end{array} \quad-(-1)^{3}-3(-1)^{2}+4(-1)+12 \\
& =-(-1)+3-4+12 \\
& =1+3-4+12 \neq 0 \\
& \operatorname{tn} x=2 \quad-(2)^{3}-3(2)^{2}+4(2)+12 \Rightarrow x-2 \\
& =-8-12+8+12=0\left(\begin{array}{c}
15 \\
a \\
f a c b o r
\end{array}\right) \\
& \text { x-2 -2 } \underbrace{\left\lvert\, \begin{array}{rrrr}
-1 & -3 & 4 & 12 \\
2 & 10 & 12 \\
-1 & -5 & -6 & 0
\end{array}\right.} \\
& -x^{2}-5 x-6 \\
& f(x)=(x-1)(x-2)(-1)\left(x^{2}+5 x+6\right) \\
& =-1(x-1)(x-2)(x+2)(x+3)
\end{aligned}
$$

Multiplicity of a zero - the multiplicity of a zero is the number of times a zero of a polynomial occurs.

$\$$

Example

Find the equation for the given graph.
strath fret er
$y=a(x+2)^{2}(x-3)^{3}$
contains this point: $(0,27)$
x y

$$
27=a(0+2)^{2}(0-3)^{3}
$$

$$
27=a(4)(-3)^{3}
$$

$$
27=a(4)(-27)
$$

$$
\begin{aligned}
& 27 \\
& \frac{27}{-108}=\frac{a(-108)}{-108}
\end{aligned}
$$

$$
a=\frac{27}{-108}=\frac{1}{-4}
$$

x-intercepts are very important, but they aren't everything - a stretch factor can change the shape of the graph, even if the x intercepts don't change at all. (It can make a vertical expansion or compression happen, as well as a reflection)

Polynomial Graphs Worksheet

For each graph, find:

- Degree (odd or even)
- Sign of leading coefficient
- Coordinates of x-intercept(s)
- Equation of the polynomial
- y-intercept

Check your equation on a graphing calculator to see if it contains all the points that are on the pictured graph.

Solutions to this worksheet will be posted.

Unit 2 - Trigonometry

trig•o•nom•e•try

/, trigə'nämətrē/

noun
the branch of mathematics dealing with the relations of the sides and angles of triangles and with the relevant functions of any angles.

Chapter 4: Trigonometry and the Unit Circle

4.0 Trigonometry Review

Trigonometry is the study of triangles and trigonometric functions. First, we review some trigonometry dealing with triangles.

Triangles

- have three angles, the measures add up to 180°
- longest side of triangle is across from the largest angle
- shortest side of a triangle is across from the smallest angle
- right triangles are triangles that have a right angle $\left(90^{\circ}\right)$
- hypotenuse is the longest side of a right triangle other sides of the triangle are often called legs
- hypotenuse is always across from the right angle
- in a right triangle, we can use the Pythagorean Theorem

If the two legs of a right triangle are called a and b, and the hypotenuse is called c, then $\quad a^{2}+b^{2}=c^{2}$.

$$
(\text { side })^{2}+(\text { side })^{2}=(\text { hyp })^{2}
$$

Look at the right triangle shown below. The angle by point A is labeled with the Greek letter θ, read "theta." Angles are very commonly labeled with the letter θ.

Which side is the hypotenuse?
(it's acroll from the right angle)
Which side is opposite θ ?

Which side is adjacent to θ ?

When we know the lengths of the sides of a right triangle, we can calculate ratios that compare the lengths of two different sides.

First, we label the hypotenuse, and the sides that are opposite and adjacent to angle θ.

There are six different ratios one can create. We'll leave the ratios in fractional form.

$$
\begin{aligned}
& \frac{\text { opposite }}{\text { hypotenuse }}=\frac{5}{13} \quad \frac{\text { adjacent }}{\text { hypotenuse }}=\frac{12}{13} \quad \frac{\text { opposite }}{\text { adjacent }}=\frac{5}{12} \\
& \frac{\text { hypotenuse }}{\text { opposite }}=\frac{13}{5} \quad \frac{\text { hypotenuse }}{\text { adjacent }}=\frac{13}{12} \quad \frac{\text { adjacent }}{\text { opposite }}=\frac{12}{5}
\end{aligned}
$$

These ratios are called the trigonometric ratios. Knowing them makes it possible to find the measure of each angle in the triangle.

Primary Trigonometric Ratios \quad Reciprocal Trigonometric Ratios

$$
S \frac{0}{1+}
$$

Remember: sin/csc are reciprocals cos/sec are reciprocals tan/cot are reciprocals

Example Find the measure of each side and angle (correct to nearest degree) in the right triangle shown below.

> "Solve the triangle"

> Pr thisoan:

$$
\begin{aligned}
& \text { (side })^{2}+(\text { side })^{2}=\left(h_{1 p}\right)^{2}
\end{aligned}
$$

(find the length, and the angle

$$
15^{2}+8^{2}=\left(h_{y p}\right)^{2}
$$

$$
225+64=\left(h_{y} p\right)^{2}
$$

$$
\sqrt{289}=\sqrt{\left(h_{y p}\right)^{2}}
$$

$$
17=\text { hyp }
$$

$B=90^{\circ}$
$\tan C=$ opp

$$
\begin{aligned}
& \tan C=\frac{15}{8} \\
& \tan ^{-1}(\tan C)=\tan ^{-1}\left(\frac{15}{8}\right) \\
& C=\tan ^{-1}\left(\frac{15}{8}\right) \doteq 61.9^{\circ}=62^{\circ} \\
& A=180^{\circ}-90^{\circ}-62^{\circ} \\
& A=28
\end{aligned}
$$

You may also remember using Law of Sines and Law of Cosines to help solve triangles that are not right triangles.

The Law of Sines	
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$	$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Use to find ANGLES	Use to find sides

However, there's a lot more to trigonometry than triangles.

trig•o•nom•e•try

/,trigə'nämətrē/

noun
the branch of mathematics dealing with the relations of the sides and angles of triangles and with the relevant functions of any angles.

(Notes package, page 3)

4.1 Angles and Angle Measure

Trigonometry does a lot more than solve triangles. It can be used to analyze many repeating patterns - things like sound, light, ocean tides, and circular motion.

We start by looking carefully at ANGLES.
Remember, angles measure the space between two rays that meet at the vertex of the angle.

Angles in standard position

- Have the vertex at the origin $(0,0)$
- Have a specific direction of rotation, shown with an arrow.
- Have the initial arm on the positive x-axis
- Have the terminal arm either in one of the four quadrants, or on the x - or y-axis.

Wherever the terminal arm is, that's how we decide what to call an angle. Options are

- First quadrant angle
- Second quadrant angle
- Third quadrant angle
- Fourth quadrant angle
- Quadrantal angle

- "quadrantal angle

> Pre-Calc 12 - Unit 2
> Page 4
positive angles start on the positive x-axis, and rotate counter-clockwise (anti-clockwise) negative angles start on the positive x-axis, and rotate clockwise

Coterminal Angles are

- different in size but
- terminate in the same place

Find another positive angle and another negative angle that are coterminal to the shown angles.

$$
\begin{aligned}
& 55^{\circ} \text { and }-305^{\circ} \text { and } 415^{\circ} \\
& \text { are cotermind }
\end{aligned}
$$

General form for coterminal angles - this is an expression that generates ALL the angles that are coterminal to a specific angle. Here's how we write the angles coterminal to 55° in general form:

$$
(\text { starter angle })+360^{\circ} n, \quad n \in I
$$

$$
55^{0}+360^{\circ} n, n \in I
$$

This means we are adding onto the original angle integer multiples of $\mathbf{3 6 0}$: one 360 ,
two 360's,
three 360 's,
four 360's...
OR
adding -360,
or two -360's, three -360's,
and so on.
(Not adding on a fractional or decimal portion of a full rotation.)

For next class

- Complete the Chapter 3 Hand-in Assignment
- Prepare for the Unit 1 test

Optional worksheet:

- Unit 1 Review with full solutions, posted on the class website

