Tonight's Class:

- About the Learning Center
- Warm-up - small whiteboards
- Any questions from 2.2-2.3?
- Working through sections 2.3 and 2.5 (omitting 2.4, since we're not requiring the use of graphing technology)

Dividing radicals
Solving radical equations

Warm-up

1. List some perfect squares
$1,4,9,16,25,36$
2. Evaluate, without using a calculator:

$$
\begin{aligned}
& \left(\frac{9}{4}\right)^{-\frac{3}{2}}=\left(\frac{4}{9}\right)^{+3 / 2}=\sqrt[2]{\frac{4}{9}}=\left(\frac{2}{3}\right)^{3} \\
& =\frac{8}{27}
\end{aligned}
$$

4. Which one of the following problem and answer pairs is incorrect?
A) Problem: $\sqrt{16} \cdot \sqrt{25}$ Answer: 20
B) Problem: $\sqrt{16} \cdot \sqrt{x^{2}}$ Answer: $4|x|$
C) Problem: $\sqrt[3]{x} \cdot \sqrt[3]{y^{2}}$ Answer: $\sqrt[3]{x y^{2}}$
D) Problem: $\sqrt{20} \cdot \sqrt[3]{y}$ Answer: $\sqrt[3]{20 y}$

$$
\begin{aligned}
& \text { pl08, } 8 c) \\
& 5 e \sqrt{24 e^{3}}-7 \sqrt{54 e^{5}}+e \sqrt[2]{6 e}+6 e, \quad e \geq 0 \\
& =5 e \sqrt{4 \cdot 6 \cdot\left(e^{2} \cdot e\right.}-7 \sqrt{2 \cdot 3 \cdot 3 \cdot 3 \cdot \sqrt{4}) \cdot}+e^{2} \sqrt{6 e}+6 e \\
& =5 e^{2} \cdot 2 \cdot \sqrt{6 e}-7 \cdot 3 \cdot e^{2} \sqrt{6 e}+e^{2} \sqrt{6 e}+6 e \\
& =10 e^{2} \sqrt{6 e}-21 e^{2} \sqrt{6 e}+e^{2} \sqrt{6 e}+6 e \\
& =\left(10 e^{2}-2 l e^{2}+e^{2}\right) \sqrt{6 e}+6 e \\
& =-10 e^{2} \sqrt{6 e}+6 e \\
& \text { \# } 109, \text { a } \\
& \text { Area }=(y)(y) \quad \text { Area }=(x)(x) \\
& A=y^{2}=24 \\
& y=\sqrt{24} \\
& =\sqrt{4.6} \\
& =2 \sqrt{6} \\
& x=\sqrt{50} \\
& \text { Perimeter: } \\
& 2 \sqrt{6}+2 \sqrt{6}+2 \sqrt{6} \\
& +5 \sqrt{2}+5 \sqrt{2}+5 \sqrt{2} \\
& +(5 \sqrt{2}-2 \sqrt{6}) \\
& =\frac{6 \sqrt{6}}{+5 \sqrt{2}-2 \sqrt{2} \sqrt{6}} \\
& =4 \sqrt{6}+20 \sqrt{2}
\end{aligned}
$$

10.

$$
\begin{aligned}
\text { Perimeter }= & 2 \sqrt{A}+3 \sqrt{A}+\sqrt{A} \\
& +2 \sqrt{A}+\sqrt{A}+\sqrt{A} \\
= & 10 \sqrt{A}
\end{aligned}
$$

Area $=4 A$ (canting boxes works!)

$$
\left.\begin{array}{rl}
\text { pl22, \#bs) } & -(3 \sqrt{2}-\sqrt{5})(\sqrt{2}+7)-(2 \sqrt{2}-\sqrt{5})^{2} \\
= & (-3 \sqrt{2}+\sqrt{5})(\sqrt{2}+7)-(2 \sqrt{2}-\sqrt{5})(2 \sqrt{2}-\sqrt{5}) \\
= & -3 \sqrt{4}-21 \sqrt{2}+\sqrt{10}+7 \sqrt{5}-\left[\begin{array}{l}
4 \sqrt{4}-2 \sqrt{10}-2 \sqrt{10}+\sqrt{25}
\end{array}\right] \\
= & -6-21 \sqrt{2}+\sqrt{10}+7 \sqrt{5}-[8-4 \sqrt{10}+5
\end{array}\right]
$$

Rationalizing the denominator
Ex $\quad \frac{3 \sqrt{3} \sqrt{14}}{15^{3} \sqrt{2}}=\frac{1 \sqrt{14}}{5 \sqrt{2}}=\frac{1}{5} \sqrt{\frac{14}{2}}=\frac{1}{5} \sqrt{7}$
also written

$$
\frac{\sqrt{7}}{5}
$$

Ex $\quad \frac{1}{\sqrt{2}} \rightarrow \frac{\sqrt{3}}{\sqrt{3}} \quad$ Multiply by " 1 ", in a specific format.

Ex $\quad \begin{aligned} & 1 \\ & \sqrt{3} \rightarrow \\ & \rightarrow\end{aligned} \frac{\sqrt{3}}{\sqrt{3}} \quad$ Multiply by \quad in a specifitic format.

$$
=\left\{\frac{\sqrt{3}}{3}\right\}
$$

Ex $\frac{3 \sqrt{5}+6 \sqrt{3}}{\sqrt{20}}$

$$
\left.\begin{array}{l}
=\frac{(3 \sqrt{5}+6 \sqrt{3})}{2 \sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} \\
=\frac{3 \sqrt{25}+6 \sqrt{15}}{10} \\
=\frac{15+6 \sqrt{15}}{10}
\end{array}\right\} \begin{aligned}
& \frac{(3 \sqrt{5}+6 \sqrt{3})}{2 \sqrt{5}} \cdot\left(\frac{2 \sqrt{5}}{2 \sqrt{5}}\right) \\
& =\frac{6 \sqrt{25}+12 \sqrt{15}}{4 \sqrt{25}} \\
& =\frac{30+12 \sqrt{15}}{20} \\
& =\frac{2(15+6 \sqrt{15})}{2(10)} \\
& =\frac{15+6 \sqrt{15}}{10}
\end{aligned}
$$

$$
\frac{4}{1+\sqrt{7}} \text { (top+ bottom) } \begin{aligned}
& \text { denominator is a } \\
& \text { binomial. } \\
& \text { we tackle this the } \\
& \text { differently! }
\end{aligned} \text { Multiply by the } \quad \text { CONJUGATE. }
$$

$$
=\frac{4}{(k+\sqrt{7}) \cdot \frac{(1-\sqrt{7})}{\sqrt{5} \cdot \sqrt{7})}}
$$

$$
=\text { the same binomial }
$$

$$
\begin{aligned}
=\frac{4-4 \sqrt{7}}{1-\sqrt{7}+\sqrt{7}-7} & =\frac{4-4 \sqrt{7}}{1-7} \\
& =\frac{4^{2+2}-4^{4} \sqrt{7}}{-6^{+2}}
\end{aligned} \quad \text { operation in the middle }
$$

$$
=\frac{2-2 \sqrt{7}}{-3}
$$

$W T$
p120,

$$
\frac{(5 \sqrt{3}+\sqrt{2}) \cdot(2 \sqrt{6}-4 \sqrt{3})}{(2 \sqrt{6}+4 \sqrt{3}) \cdot(2 \sqrt{6}-4 \sqrt{3})}
$$

$$
=\frac{10 \sqrt{18}-20.3+2 \sqrt{12}-4 \sqrt{6}}{4.6-8 \sqrt{18}+8 \sqrt{18}-16.3}
$$

$$
=\frac{10 \sqrt{922}-60+2 \sqrt{4 \cdot 3}-4 \sqrt{6}}{24-48}
$$

$$
=\frac{10.3 \sqrt{2}-60+2.2 \sqrt{3}-4 \sqrt{6}}{-24}
$$

$$
=\frac{30 \sqrt{2}-60+4 \sqrt{3}-4 \sqrt{6}}{-24}
$$

$$
\begin{gathered}
\text { also to: } \frac{-x(-15 v z+>u}{-x(-12)} \\
\frac{-15 \sqrt{2}+30-2 \sqrt{3}+2 \sqrt{6}}{12}
\end{gathered} \text { the radicands! }
$$

$$
\begin{aligned}
& \frac{5}{\sqrt[3]{32}} \cdot \frac{\sqrt[3]{2}}{\sqrt[3]{2}}=\frac{5 \sqrt[3]{2}}{\sqrt[3]{64}} \quad \begin{array}{c}
\text { Think } \cdots \text {... } \\
\text { whiner named ned } \\
\text { would weltiph by, } \\
\text { to mute }
\end{array} \\
& =\frac{5 \sqrt[3]{2}}{4} \\
& \text { to get a CUBE }
\end{aligned}
$$

2.5 Solving Radical Equations Algebraically

focus: solve equations involving radicals

simpler type of equation:	$4 x+5=x+17$	-5

Preview 7

Need practice with solving equations? Here's a handout with answers
(not solutions)

WT, page 151

Example 1 Solving an Equation with One Radical

Solve each equation. Verify the solution. And, list the
Solve each equation. Verify the solution. And,
$\begin{array}{ll}\text { a) } 3 \sqrt{x}=5 & \text { b) } 4 \sqrt{x+1}-5=3\end{array}$
radicand ≥ 0
and
simplify
a) $3 \sqrt{x}=5$
0) restrictions

1) collect

restrictions	$\frac{3}{3} \sqrt{x}=\frac{5}{3}$

2) isolate
3) square both
the equation

4) CHECK it!
in the
onsincl original

the equation
5) CHECK it!
in the
onjsinal
equation
b)

$$
\begin{aligned}
4 \sqrt{x+1}-5 & =3 \\
+5 & +5 \\
\frac{4 \sqrt{x+1}}{4} & =\frac{8}{4} \\
(\sqrt{x+1})^{2} & =(2)^{2} \\
x+1 & =4
\end{aligned}
$$

$$
\overline{\text { radical }} \geq 0
$$

$$
x+1 \geq 0
$$

$$
x \geq-1
$$

$L S$ RS $4 \sqrt{3+1}$ -5 $4 \sqrt{4}$ -5 $4(2)$ -5 8 3 8 3		

WT piss c) $\sqrt{5 x+3}-2=-1$
restrictions: \quad radicand ≥ 0

$$
5 x+3 \geq 0
$$

$$
x \geq-\frac{3}{5}
$$

$$
\begin{aligned}
& \sqrt{5 x+3}-2=-1 \\
&+2 \\
&+2 \\
&(\sqrt{5 x+3})^{2}=(1)^{2} \\
& 5 x+3=1 \\
&-3
\end{aligned}
$$

Check $\sqrt{5 x+3}-2=-1$

b) $157 \sqrt{3 x-1}+5=2$

$$
\begin{aligned}
-5 & -5 \\
(\sqrt{3 x-1})^{2} & =(-3)^{2} \\
3 x-1 & =9 \\
+1 & +1 \\
\frac{3 x}{3} & =\frac{10}{3} \\
x & =\frac{10}{3}
\end{aligned}
$$

Check $\sqrt{3 x-1}+5=2$

$$
\begin{aligned}
\sqrt[3]{3 x+1}+6 & =4 \\
-6 & -6 \\
(\sqrt[3]{3 x+1})^{3} & =(-2)^{3}
\end{aligned}
$$

$$
\text { index } x=3
$$

For next class

- Complete the two "Recaps" from tonight!
- Finish worktext questions for all of Chapter 2

Complete the Chapter 2 Hand-in, due next class
Prepare for the Chapter 2 Test, next class

4 multiple-choice questions

10 written questions
Out of 20 marks total
You will be permitted to use both the foldables (Exponent Rules and Rationals) during the test
Prepare for the Unit 1 Test, next Thursday
Includes concepts from Chapter 1 and Chapter 2
Out of 30-35 marks, something like that
You will be permitted to use both the foldables (Exponent
Rules and Rationals) during the test

