## Tonight's Class:

- Any questions from Chapter 2?
- Chapter 2 Test - closed book, but can use both foldables
- Working through sections 3.1 and 3.2
- Factoring trinomials, leading coefficient not equal to 1
- Factoring polynomial expressions


## Recap question

b) $\frac{(3 \sqrt{5}+\sqrt{2})}{(\sqrt{5}+\sqrt{3})} \cdot \frac{\sqrt{5}-\sqrt{3})}{(\sqrt{5}-\sqrt{3})}=\frac{3 \sqrt{5 \sqrt{5}}-3 \sqrt{5} \sqrt{3}+\widetilde{\sqrt{2} \sqrt{5}}-\sqrt{2 \sqrt{3}}}{\sqrt{5} \sqrt{5}-\sqrt{5} \sqrt{3}+\sqrt{3} \sqrt{5}-\sqrt{3} \sqrt{3}}$

$$
\begin{aligned}
& =\frac{15-3 \sqrt{15}+\sqrt{10}-\sqrt{6}}{5-\sqrt{15}+\sqrt{15}-3} \\
& =\frac{15-3 \sqrt{15}+\sqrt{10}-\sqrt{6}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { pl22 \#by) } \frac{1}{5 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{5 \sqrt{3} \sqrt{3}} \\
& =\frac{\sqrt{3}}{5 \cdot 3} \\
& \frac{1}{5 \sqrt{3}} \cdot \frac{5 \sqrt{3}}{5 \sqrt{3}} \\
& =\frac{5 \sqrt{3}}{25 \cdot 3} \\
& =\frac{5 \sqrt[2]{3}}{75^{25}}=\frac{\sqrt{3}}{15} \\
& \text { p125, 106) } \frac{(5 \sqrt{3}+\sqrt{2}) \cdot(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}=\frac{5 \cdot 3)+\sqrt{6}+\sqrt{6}+2}{3+\sqrt{6}-\sqrt{6}-2} \\
& =\frac{17+6 \sqrt{6}}{1} \\
& =17+6 \sqrt{6} \\
& \text { d) } \frac{(6 \sqrt{3}-2)}{(5+4 \sqrt{2})} \cdot \frac{(5-4 \sqrt{2})}{(5-4 \sqrt{2})}=\frac{30 \sqrt{3}-24 \sqrt{6}-10+8 \sqrt{2}}{25-20 \sqrt{2}+20 \sqrt{2}-\frac{16 \sqrt{4}}{20}}
\end{aligned}
$$

$$
\text { d) } \begin{aligned}
\frac{(6 \sqrt{3}-2)}{(5+4 \sqrt{2}) \cdot(5-4 v c)}(5-4 \sqrt{2}) & =\frac{20 v s-24 v 6-10+8 v 2}{\left(25-20 \sqrt{2}+20 \sqrt{2}-\frac{16 \sqrt{4}}{(52}\right.} \\
& =\frac{30 \sqrt{3}-24 \sqrt{6}-10+8 \sqrt{2}}{-7} \\
& =\frac{-30 \sqrt{3}+24 \sqrt{6}+10-8 \sqrt{2}}{+7}
\end{aligned}
$$



$$
\begin{aligned}
& p\left(27 \text { |Ba) } \begin{array}{rl}
\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{3}} & =\frac{1 \rightarrow \sqrt{5}}{\sqrt{5} \rightarrow \sqrt{5}}-\frac{1 \rightarrow \sqrt{3}}{\sqrt{3} \rightarrow \sqrt{3}} \\
& =\frac{3 \cdot \sqrt{5}}{3}-\frac{\sqrt{3}}{3} \cdot \frac{5}{5} \\
& =\frac{3 \sqrt{5}}{15}-\frac{5 \sqrt{3}}{15} \\
\frac{(5 \sqrt{2}-4) \cdot \frac{\sqrt{3}}{\sqrt{3}}}{\sqrt{3}}=\frac{5 \sqrt{6}-4 \sqrt{3}}{3}
\end{array}\right. \\
&=\frac{3 \sqrt{5}-5 \sqrt{3}}{15}
\end{aligned}
$$

## Please:

Make sure your name is on your Chapter 2 Hand-in, and turn it in.

- Put away your phone and all materials except for the "foldables," a calculator, and something to write with.
- On your test, write clearly and show all necessary steps - including on multiple-choice questions! When you are finished, please look over your test before handing it in.
- While other people are still finishing, respect them by being quiet. You can leave the classroom if you wish, but be back in time for the rest of class.

They're back....


Preview 8
3.1 Factoring Trinomials, Leading Coefficient not 1

Focus: write trinomial as the product of two binomials, or of a constant and two binomials
Factor - " 30 " means wite it as a product:

fetor completely - brock it down into a product of prime numbers

$$
\begin{array}{rlrl}
30 & =3 \cdot 10 & 5.6 \\
30 & =3 \cdot 5 \cdot 2 & & 5 \cdot 2.3
\end{array}
$$

$$
2.15
$$

$$
=2.3 .5
$$

factoring polynomials, including trinomials (3 terms) is our fears here.

Greatest Common Factor (GCF) (always the first step!)
Factor Out the GCF
The first step to factoring is to factor out the greatest common factor (GCF) from each term.


$$
\begin{aligned}
& \frac{12 y^{3}}{3 y}-\frac{15 y^{2}}{3 y}+\frac{6 y}{3 y} \\
& 4 y^{2}-5 y+2
\end{aligned}
$$

To determine the Greatest Common Factor of a polynomial, find the largest monomial that divides evenly into each term.

FIND THE GCF:

$$
\begin{aligned}
& \frac{6 x^{2} y}{2 x y}+\frac{14 x y^{2}}{2 x y}+\frac{42 x y}{2 x y}+\frac{2 x^{2} y^{2}}{2 x y} \\
& \text { How do we find the monomial? } \\
& \text { - Break each term up into its prime factors } \\
& \text { - Look for factors that appear in EACH term } \\
& \text { - Multiply them together = GCF } \\
& 2 x y(3 x+7 y+21+x y) \quad \begin{aligned}
6 x^{2} y & =\{2 \cdot 3 \cdot x \cdot x \cdot y \\
14 x y^{2} & =2 \cdot 7 \cdot x \cdot(y \cdot y \\
42 x y & =2 \cdot 3 \cdot 7 \cdot x)-y \\
2 x^{2} y^{2} & =2 \cdot x \cdot x \cdot y-y
\end{aligned}
\end{aligned}
$$

After finding the GCF, divide it out of each term to get the factored form of the polynomial:

$$
\begin{aligned}
& 6 x^{2} y+14 x y^{2}+42 x y+2 x^{2} y^{2} \\
= & 2 x y(3 x+7 y+21+x y)
\end{aligned}
$$

Try:

$$
9 x^{2} y^{3}+18 x^{3} y^{2}+15 x y^{2}
$$



$$
\frac{9 x^{2} y^{3}}{3 x y^{2}}
$$

$$
=3 x y
$$

Factoring Trinomials often, will be in this formet:

$$
a x^{2}+b x+c
$$

where $a, b$, and $c$ are numbers


$$
x^{2}+7 x+12=(x+3)(x+4)
$$

Trinomial with leading coefficient =1

Factoring Trinomials with $\mathbf{a}=1$

Put the two numbers in the expression.

$$
x^{2}+b x+c
$$

Find the two numbers that will make these equations true.

$$
x^{2}+2 x-8
$$

$$
4 \times-2=-8
$$

$$
4+-2=2
$$

$$
(x+\boxed{4})(x+\boxed{-2})
$$

Ty
futures: these:
a) $x^{2}-5 x-24=(x+3)(x-8)$

$$
S=-5 \left\lvert\, \begin{array}{l|l}
P=-24 \\
\hline & \begin{array}{l}
1,24 \\
2,12
\end{array} \\
\frac{3,-8 j}{28}
\end{array}\right.
$$

factorise:

$$
S=-5 \left\lvert\, \begin{array}{ll}
P=-24 \\
& \begin{array}{ll}
1,24 & \\
2,12 & 3,-81 \\
3,8 \\
4,6 & -3,8
\end{array}
\end{array}\right.
$$

b) $x^{2}-8 x+12=(x-2)(x-6)$

$\frac{s=-8)}{}$| $\frac{P=12}{1,12}$ |
| :--- |
| $\frac{2,6}{3,4}$ |$\quad-2,-6$



Sometimes we'll be stuck with a leading coefficient not equal to 1.
Two methods for factoring this type (there are even more methods!)

- Systematic trial, or "Guess and Check"
- AC method, or "Decomposition Method"

Guess and Check Method

Trinomial with leading coefficient $\neq 1$

Example:


Decomposition/AC Method

$$
\begin{aligned}
& a x^{2}+b x+c \\
& 2 x^{2}+5 x-7
\end{aligned}
$$

$$
\begin{aligned}
& 2 x^{2}-2 x+7 x-7 \\
& 2 x(x-1)+7(x-1) \\
& (x-1)(2 x+7)
\end{aligned}
$$

AC method

1) mutter "A "and "C"

$$
2 x-7=-14 x
$$

2) find two number th r have pron and $\sin$ of $B$

3) split up the middle term into 2 terms, using the number you just got as coefficients.
4) frater the GcA out of the
 toms of 14 $\frac{\operatorname{scom}}{\tan }$

Try:

$$
\begin{aligned}
& 3 x^{2}-5 x+3 x-5 \\
& x(3 x-5)+1(3 x-5) \\
= & (3 x-5)(x+1)
\end{aligned}
$$

OR $3 x^{2}+3 x-5 x-5$

$$
3 x(x+1)-5(x+1)
$$

$$
(x+1)(3 x-5)
$$

1) $A C=-15$
2) What are the 2 numbers we need? (Product $=A C$, $\operatorname{sun}=B$ )

$$
S=-2 \mid P=-15
$$

3) split up the middle tern
4) do the GCF step

## Factor by Grouping/Decomposition



Rewrite the middle term of the polynomial using -6 and -4.
( $-6 x-4 x$ is just another way of
expressing -10x.)

$$
\begin{aligned}
& 3 x(x-2)-4(x-2) \quad \text { Factor by grouping. } \\
& (x-2)(3 x-4)
\end{aligned}
$$

1) Find AC
2) Find two numbers that multiply to $=A C$, And add to make " B "
3) Split up the middle term in the original question into two parts, using the numbers you found in step 2
4) Factor the GCF out of the first 2 terms
5) Factor the GCF out of the last 2 terms
6) Write final factored answer

### 3.2 Factoring Polynomial Expressions

Focus: factor polynomial expressions that contain functions


Factoring a Difference of Squares

## Difference of Squares

$$
=a^{2}-b^{2}
$$

Examples:

$$
4 x^{2}-81 y^{2}
$$

$=(3 x)^{2}-4^{2}$
$=(2 x)^{2}-(9 y)^{2}$
$=(3 x+4)(3 x-4)$
$=(2 x+9 y)(2 x-9 y)$

## Example 4 Factoring Using the Difference of Squares Pattern

Factor each polynomial expression.
a) $4 x^{2}-25 y^{2}$
b) $(2 x-1)^{2}-(y+4)^{2}$
c) $32(x+2)^{2}-18(2 y-3)^{2}$

$$
\text { a) } \begin{aligned}
4 x^{2}-25 y^{2} & =(2 x)^{2}-(5 y)^{2} \\
& =(2 x+5 y)(2 x-5 y)
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
& \frac{(2 x-1)^{2}-(y+4)^{2}}{} \quad \text { do a substitution } \\
&=A^{2}-B^{2} \quad A=\underline{2 x-1} \\
&= B=\underline{y+4} \\
&=(2 x-1+y+4)(2 x-1-(y+4)) \\
&=(2 x-1+y+4)(2 x-1-y-4) \\
&=(2 x+y+3)(2 x-y-5)
\end{aligned}
$$

## For next class

- Finish worktext questions for 3.1 and 3.2

- More factoring practice worksheets available on website
- Prepare for the Unit 1 Test, next class
- Includes concepts from Chapter 1 and Chapter 2
- Out of 30-35 marks, something like that
- You will be permitted to use both foldables (Exponent Rules and Rationals) during the test

