Tonight's Class:

- Grab a white board, pen and eraser
- 4.3 Trig Ratios
- 4.4 Trigonometric Equations

A Trick to Remember Values on The Unit Circle - video

Quick Check-in - individual whiteboard

WB-
Use your unit circle to find these values exactly. Don't use a calculator.

$$
\sin \theta=y \text {-corranate }
$$

1. $\sin 30^{\circ}=\frac{1}{2}$
2. $\sin 225^{\circ}=-\frac{\sqrt{2}}{2}$
3. $\sin 240^{\circ}=-\frac{\sqrt{3}}{2}$
4. $\sin 45^{\circ}=\frac{\sqrt{2}}{2}$
5. $\sin 150^{\circ}=\frac{1}{2}$
6. $\sin 300^{\circ}=-\frac{\sqrt{3}}{2}$
7. $\sin 0^{\circ}=0$
8. $\sin 390^{\circ}=\frac{1}{2}$
9. $\sin 210^{\circ}=-\frac{1}{2}$
10. $\sin 180^{\circ}=0$
11. $\sin 270^{\circ}=-1$

$$
\text { 1. } \cos 0=1
$$

2. $\cos \left(\frac{7 \pi}{6}\right)=-\frac{\sqrt{3}}{2}$
3. $\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$

4. $\cos 0=1 \quad$ 2. $\cos \left(\frac{7 \pi}{6}\right)=-\frac{\sqrt{3}}{2} \quad$ 3. $\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$
5. $\cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2} \quad$ 5. $\cos \left(\frac{3 \pi}{2}\right)=0 \quad$ 6. $\cos \left(\frac{3 \pi}{4}\right)=-\frac{\sqrt{2}}{2}$
6. $\cos \left(\frac{5 \pi}{6}\right)=-\frac{\sqrt{3}}{2} \quad$ 8. $\cos \left(\frac{4 \pi}{3}\right)=-\frac{1}{2} \quad$ 9. $\cos \left(\frac{11 \pi}{6}\right)=\frac{\sqrt{3}}{2}$
7. $\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} \quad$ 11. $\cos (\pi)=-1 \quad \quad 12 \cdot \cos \left(\frac{7 \pi}{4}\right)=\frac{\sqrt{2}}{2}$

Pre-Calc 12 - Unit 2
Page 15
4.3 Trigonometric Ratios

We can use the unit circle diagram to get definitions for all six of the trigonometric ratios.

More Exact Values - Use the unit circle to find each exact value - no calculator!

$$
\begin{array}{ll}
\sin (\pi)=0 & \tan (\pi)=\frac{y}{x}=\frac{0}{-1}=0 \\
\csc (\pi)=\frac{1}{0}=\text { undefined } & \cot (\pi)=\frac{x}{y}=\frac{-1}{0}=\text { undefined }
\end{array}
$$

b) $\cos \left(\frac{7 \pi}{4}\right)=\frac{\sqrt{2}}{2}$
$\begin{aligned} & \sin \left(\frac{7 \pi}{4}\right)=\frac{-\sqrt{2}}{2} \quad \tan \left(\frac{7 \pi}{4}\right)=\frac{-\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=\frac{-\sqrt{2}}{2} \cdot \frac{2}{\sqrt{2}} \\ &=\frac{-2 \sqrt{2}}{2 \sqrt{2}}=-1\end{aligned}$
$\underbrace{}_{\left(\frac{\sqrt{2}}{2},-\sqrt{\frac{\sqrt{2}}{2}}\right)} \sec \left(\frac{7 \pi}{4}\right)=\frac{2}{\sqrt{2}}$ or
$\operatorname{css}\left(\frac{7 \pi}{4}\right)=-\frac{2}{\sqrt{2}}$

$$
\cot \left(\frac{7 \pi}{4}\right)=\frac{\frac{\sqrt{2}}{2}<x}{-\frac{\sqrt{2}}{2}<y}=\frac{\sqrt{2}}{2} \cdot \frac{2}{-\sqrt{2}}
$$

$=\frac{2 \sqrt{2}}{-2 \sqrt{2}}=-1$
$\begin{array}{rlrl}\text { c) } \cos \left(\frac{7 \pi}{6}\right) & =-\frac{\sqrt{3}}{2} & \sin \left(\frac{7 \pi}{6}\right) & =-\frac{1}{2} \\ \cos \left(\frac{7 \pi}{6}\right)=\frac{y}{x}=\frac{-1 / 2}{-\frac{\sqrt{3}}{2}} \begin{aligned} \text { Don }{ }^{\prime}+ \\ \text { stop } \\ y e t!\end{aligned} & =-\frac{1}{2} \cdot \frac{2}{-\sqrt{3}} \\ \sec \left(\frac{7 \pi}{-\sqrt{3}}\right. & & & =\frac{-2}{-2 \sqrt{3}}=\frac{1}{\sqrt{3}}\end{array}$
$=\frac{-2}{\sqrt{3}}$
$=-\frac{2}{\sqrt{3}}$

Pre-Calc 12 - Unit 2 Page 16

Sometimes the radius is not 1 . Here are the ratio definitions that work for any r value.

$$
\begin{array}{ll}
\text { Primary Ratios } & \text { Reciprocal Ratios } \\
\sin \theta=\frac{y}{r} & \csc \theta=\frac{r}{y} \\
& \cos \alpha-\curvearrowleft
\end{array}
$$

Example
The terminal arm of a standard position angle θ contains the point $(-2,-5)$. Find the
value of all six trigonometric ratios for angle θ. You do not need to find the size of angle
θ. Leave answers in exact fractional form.
The angle terminates in quadrant 3

$\sin \theta=\frac{y}{r}=\frac{-5}{\sqrt{29}}$	$\csc \theta=\frac{\sqrt{29}}{-5}$
$\cos \theta=\frac{x}{r}=\frac{-2}{\sqrt{29}}$	$\sec \theta=\frac{\sqrt{29}}{-2}$
$\tan \theta=\frac{y}{x}=\frac{-5}{-2}=\frac{5}{2}$	$\cot \theta=\frac{2}{5}$

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \\
(-2)^{2}+(-5)^{2}=r^{2} \\
4+25=r^{2}
\end{gathered}
$$

$$
29=r^{2}
$$

$$
\begin{gathered}
\sqrt{29}=r \\
\text { Amours Positive, leave in exact form }
\end{gathered}
$$

$$
\begin{array}{r}
\text { Pre-Calc } 12 \text { - Unit } 2 \\
\text { Page } 17
\end{array}
$$

Finding the Signs of the Trigonometric Ratios
How can we predict whether a specific trigonometric ratio will be positive or negative?

Pre-Calc 12 - Unit 2
Page 18

Approximate Values

For angles not related to special angles, calculators can give us accurate approximations.

Try
Evaluate each of the following ratios correct to 4 decimal places, using a calculator.
a) $\tan \left(-65^{\circ}\right)=-2.1445$
b) $\sec 417=\frac{1}{\cos 417^{\circ}}$
$\doteq 1.8361$
$\begin{aligned} & \text { c) } \cot \left(\frac{3 \pi}{5}\right)=\frac{1}{\tan \left(\frac{3 \pi}{5}\right)} \\ & \\ & \begin{array}{l}\text { use } \\ \text { radiay } \\ \text { mode }\end{array}\end{aligned}$
d) $\cos (4)=-0.6536$
use

$$
\text { f) } \begin{aligned}
\csc \left(\frac{4 \pi}{7}\right) & =\frac{1}{\sin \left(\frac{4 \pi}{7}\right)} \\
& =1.0257
\end{aligned}
$$

Use the correct mode - either degrees or radians, matching the angle's units.
Ro caraful whon ovalnatino rocinracal ratios.

Use the correct mode - either degrees or radians, matching the angle's units.
Be careful when evaluating reciprocal ratios.
Don't take the reciprocal of the angle!
Instead, use these relationships:

$$
\begin{aligned}
& \csc (\text { angle })=\frac{1}{\sin (\text { angle })} \\
& \cot (\text { angle })=\frac{1}{\tan (\text { angle })} \\
& \sec (\text { angle })=\frac{1}{\cos (\text { angle })}
\end{aligned}
$$

TB 4.3 p 201: 1-2(acegik), 3ace, 6ace, 9ace, 12ac

Use your unit circle to solve these equations:

2. $\sin \theta=\frac{\sqrt{3}}{2}, 0^{\circ} \leq \theta<360^{\circ}$

3. $\cos \theta=\frac{\sqrt{2}}{2}, 0^{\circ} \leq \theta<90^{\circ}$

45°
4. $\cos \theta=\frac{\sqrt{2}}{2}, 0^{\circ} \leq \theta<360^{\circ}$

Pre-Calc 12 - Unit 2
Page 19

4.4 Solving Trigonometric Equations

We now know how to find trigonometric ratio values for any angle. Sometimes we must settle for an approximation, other times we can give an exact value.

For example:

$$
\begin{array}{ll}
\sin 47^{\prime}=0.7314 & \cos \left(\frac{5 \pi}{6}\right)=-\frac{\sqrt{3}}{2} \\
\begin{array}{c}
\text { (chledter } \\
\text { neddd) }
\end{array} & \begin{array}{c}
\text { Jnit } \\
\text { circle }
\end{array}
\end{array}
$$

Now we look at the opposite situation. Given the value of a trigonometric ratio, how do we find out the size of the angle? This is a process that works well:

Isolate - Decide - Get Reference Angle - Solve

Examples Solve algebraically. If possible, give exact answers. Otherwise, give answers
correct to one decimal place.
a) $\sin \theta-0.8=0$, for $0 \leq \theta<360 \quad \begin{aligned} & \text { tels us } \\ & \text { answers must } \\ & \text { be in degres. }\end{aligned}$
See page 21.

1) isolate function

$$
\begin{aligned}
\sin \theta-0.8 & =0 \\
+0.8 & =0.8 \\
\sin \theta & =0.8
\end{aligned}
$$

2) decite which melood Well use calculator. $\sin \theta=0.8$

b) $\cos \theta=-1$, for $-\pi \leq \theta<2 \pi$
decide - vse unit circle - ansuers in Q2,Q3

$$
\begin{aligned}
& \text { answr: } \pi= \\
& \text { anothe musuer is the } \\
& \text { cotermind angle: } \\
& \pi-2 \pi \\
& =-\pi
\end{aligned}
$$

d) $3 \tan \theta-3=0$, for $0 \leq \theta<2 \pi$

$$
\left.\begin{array}{rl}
\frac{3 \tan \theta=\frac{3}{3}}{} & Q_{1}
\end{array}=\pi / 4\right)
$$

e) $3 \sec \theta-10=0$, for $0^{\circ} \leq \theta<720$

Whiteboards

Solve these two trigonometric equations. If exact answers are possible, give those. Otherwise, round values correct to 2 decimal places.
For each equation answer:

- In which quadrants will the answers be?
- What is the size of the reference angle?
- What are the solutions?

Which of these trigonometric equations have NO SOLUTION?

1.	$\sin \theta=-2$
2.	$\cos \theta=0.3$
3.	$\tan \theta=0.9$
4.	$\tan \theta=15$
5.	$\sin \theta=-0.5$
6.	$\cos \theta=-1.4$

Isolate - Decide - Get Reference Angle - Solve

1) Isolate the trigonometric term. If it uses cot, sec, or csc, take the reciprocal of both sides of the equation to get a simpler-to-solve version of the equation.
2) Decide whether the equation can be solved using

- special angles on the unit circle. Look for: $0, \pm 1, \pm \frac{1}{2}, \pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{3}}{2}$
- the $\sin ^{-1}, \cos ^{-1}$ or $\tan ^{-1}$ button on the calculator
- OR, cannot be solved

3) Determine in which quadrants answers will be found.
4) Find the reference angle and use it to find all the solutions in the given domain. Use the same units (either degrees or radians) as shown in the question's domain.

Examples Solve algebraically. If possible, give exact answers. Otherwise, give answers correct to one decimal place.
a) $\sin \theta=-0.8$, for $0^{\circ} \leq \theta<360^{\circ}$

$$
\begin{aligned}
\theta_{R} & =\sin ^{-1}(+0.8) \\
& =53.1^{\circ} \text { use this to } \\
& \text { get answers }
\end{aligned}
$$

If we calculate $\sin ^{-1}(-0.8)$, the calculator gives us a negative answer. We don't want this, because the domain asks for only positive answers.
To avoid this problem, give the calculator the trigonometric ratio as a positive quantity This guarantees the calculator will give us the reference angle, which will be positive.
$Q_{3}=180^{\circ}+\theta_{R}=233.1^{\circ}$
$Q_{4}=$
$360^{\circ}-\theta R=306.9^{\circ}$
b) $5 \cos \theta-2=2 \cos \theta-4$, for $0 \leq \theta<720$
$-2 \cos \theta-2 \cos \theta$
$3 \cos \theta-2=\begin{aligned} & -4 \\ & +2\end{aligned}+2$

$3 \cos \theta=-2$
Calculator
$\cos \theta=\frac{-2}{3} \quad$ Calculator

General Solution

How many solutions a trigonometric equation has depends on the domain specified in the question. When the domain is all real numbers, there are infinitely many solutions. This is called the general solution.

Example Solve algebraically. If possible, give exact answers. Otherwise, give answers correct to one decimal place.
a) $3 \cos \theta-1=0$ general solution in degree measure.

$$
\begin{array}{l|l}
& \checkmark \\
\hline & \checkmark
\end{array}
$$

$3 \cos \theta$	$=1$
$\cos \theta$	$=\frac{1}{3}$
θ_{R}	$=\cos ^{-1}\left(\frac{1}{3}\right)$
	$=70.5^{\circ}$

$Q_{1}=70.5^{\circ}$
$Q_{4}=360^{\circ}-\theta_{K}$
$=289.5^{\circ}$
Genera Solution:
$70.5^{\circ}+360^{\circ} n, n \in I$
$289.5^{\circ}+360^{\circ} n, n \in I$
b) $\cot \theta+5=0$, general solution in radian measure.

$$
\begin{aligned}
\cot \theta & =-5 \\
\frac{1}{\tan \theta} & =-5 \\
\tan \theta & =-\frac{1}{5}
\end{aligned} \quad \begin{array}{r}
\theta_{R}=\tan ^{-1}\left(+\frac{1}{5}\right) \\
\doteq 0.2
\end{array}
$$

Here's how to write the general solution

- list each answer θ, found in one full rotation, separately
- to each answer add on the appropriate amount, either

$$
+2 \pi n, n \in I \quad \text { or }+360^{\circ} n, n \in I
$$

For equations using tangent or cotangent, we find that in one full rotation the two solutions are spaced exactly π or 180° apart. Because of this, we can just write the first solution, and add onto it:

Example

Suppose that for a certain equation, we are all told its solutions for $0 \leq \theta<360^{\circ}$ are $\theta=20^{\circ}$ and $\theta=160^{\circ}$. What is the general solution?

$$
\text { Geed solution: } \quad \begin{aligned}
& 20^{\circ}+360^{\circ} n, n \in I \\
& 160^{\circ}+360^{\circ} n, n \in I
\end{aligned}
$$

Solving Second-Degree Trigonometric Equations
When we solve equations with an exponent we usually start by factoring.
For example, solve: $\quad 2 x^{2}-1=x$
$A C=-2$
$2 x^{2}-x-1=0$
$-2,1$
Factr!
$2 x^{2}-2 x+x-1=0$ $(x-1)(2 x+1)=0$ $2 x(x-1)+1(x-1)=0$ Example
Solve algebraically. I
$2 \tan ^{2} \theta-1=\tan \theta$, for $0 \leq \theta<360$

We have to start these by getting everything to one side, then factoring. Once we have factored, we set each factor equal to zero. This means we will have two equations to solve.
(4.4) TB p 211: 2-4, 5ace, 7 all

Trigonometry Practice \#4

Coming up

- Starting Chapter 5 next class (trigonometric graphs)
- Chapter 4 Hand-in due Thursday, May 18
- No class on Monday, May 22 (Victoria Day weekend)
- Test 3 on Tuesday, May 23 (sections 4.2-5.4, omitting 5.3).

More Practice
Worksheet: More Chapter 4 Review, found on website (with solutions)
Worksheet: Trig Practice \#4, on website (with solutions)

