Class_08 Oct 4 - Unit Circle and Special Angles

Wednesday, September 28, 2022 9:39 PM

Tonight's Class

Grab a white board, pen and eraser
Returning Unit 1 Test, rewrite sign-up
4.1 Arc Length
4.2 Unit Circle and Special Angles
4.3 Trigonometric Ratios

WB - random groups

The graph of $y=f(x)$ is transformed to produce $y=g(x)$.
What is the equation of the transformed graph?
Strategy - figure out what you think it is. Then make a table of key points from the original graph and actually perform your transformations to it. See whether or not you are right.

Check-in

PRACTICE

MAKES

PROGRES
NOT
PERFEC.

1. $2 \pi=360^{\circ}$
2. $\frac{\pi}{3}=60^{\circ}$
3. $\frac{3 \pi}{2}=270^{\circ} \frac{3}{2} \times \frac{180^{\circ}}{1}$
4. $\frac{\pi}{4}=45^{\circ}$ $=\frac{540^{\circ}}{2}$ $=270^{\circ}$
5. $\frac{\pi}{2}=90^{\circ}$
6. $\frac{\pi}{6}=30^{\circ}$
7. $45^{\circ}=\frac{\pi}{4}$
$=\frac{3 \pi}{2}$

Working with Radians in Fraction Form

Because π radians is the size of a straight angle (half a rotation), we end up working a lot with angles written as fractional parts of π. Let's review adding/subtracting fractions.

$$
\begin{aligned}
\frac{2 \cdot 6}{6}-\frac{1}{6} & =\frac{12}{6}-\frac{1}{6} \\
& =\frac{11}{6}
\end{aligned}
$$

Try
$\operatorname{lax}_{\text {a }}^{4}(1)+\frac{1}{4}=\frac{4}{4}+\frac{1}{4}=\frac{5}{4}$
果
$\frac{c 5}{6} 1-\frac{1}{6}=\frac{5}{6}$
d) $2-\frac{1}{4}=\frac{7}{4}$
e) $1-\frac{1}{4}=\frac{3}{4}$
f) $1+\frac{1}{3}=\frac{4}{3}$

Different Denominators

$$
\begin{array}{r}
\text { Different Denominators } \\
\begin{array}{l}
\frac{2}{3}+\frac{1}{4}= \\
2 / 3 \\
8
\end{array}+\frac{2}{3} \cdot \frac{4}{4}+\frac{1}{4} \cdot \frac{3}{3} \\
8+\frac{3}{12}=\frac{11}{12}
\end{array}
$$

 ${ }_{T r y}^{1 \mathrm{~s} \pi}$
(20) $\frac{\pi}{6}+\frac{\pi}{6}=$
$\frac{b 2}{2} \frac{2 \pi}{r}-\frac{\pi}{2}=$
c) $\frac{3 \pi}{4}+\frac{2 \pi}{1} \frac{4}{4}$
$=\frac{6 \pi}{6}+\frac{\pi}{6}$
$\frac{4 \pi}{2}-\frac{\pi}{2}$
$=\frac{3 \pi}{4}+\frac{8 \pi}{4}$
$=\frac{7 \pi}{6}$
$=\frac{3 \pi}{2}$
$=\frac{11 \pi}{4}$

$$
\begin{array}{r}
\text { Pre-Calc } 12 \text { - Unit } 2 \\
\text { Page } 9
\end{array}
$$

Standard-Position Angles in Radian Measure

A straight angle measures π radians. This helps us when
sketching angles that are fractions involving π.

For each angle below:

- Draw the angle in standard position.
- List two angles that are coterminal to the given angle. Use radians, not degrees!

c) $\frac{5 \pi}{3}$

$=\frac{7 \pi}{6}+\frac{12 \pi}{6}$
$=\frac{19 \pi}{6}$

$$
\frac{7 \pi}{6}-\frac{12 \pi}{6}=-\frac{5 \pi}{6}
$$

Quick Check-in
What is the size of each angle, in radian measure?
\#1

\#3

\#6

I don't understand why some people use fractions instead of decimals.

It's pointless.

$$
\begin{aligned}
& a r=6 \mathrm{~cm}=2 \pi r \\
&=2 \pi(6) \\
&=12 \pi \\
&=37.7 \\
& \mathrm{~cm}
\end{aligned}
$$

Pre-Calc 12 - Unit 2
Page 10

Arc Length

Suppose we have a circle with radius $=20 \mathrm{~cm}$. If we mark off a central angle measuring
e 10

Forms the tu faster.
$2 \pi r\left(\frac{\theta^{\circ}}{360^{\circ}}\right)=\left(\frac{a}{2 \pi r} x\right)^{-2 \pi r}$ $a=\frac{\theta}{n \cdot} \cdot \frac{\mathfrak{Z}_{\pi r}^{\prime}}{1}$

$$
\begin{aligned}
& a=\frac{\theta}{360} \cdot \frac{2^{\prime} \pi n}{1} \\
& a=\theta r\left(\frac{\pi}{180}\right.
\end{aligned}
$$ measuring 7 cm is subtended by a central angle, what is the measure of that central angle, in radians? What is the measure of the central angle, in degrees?

$$
\begin{aligned}
a & =r \theta \\
\frac{7}{4.5} & =\frac{4.5 \theta}{4 / 5} \\
\theta & =\frac{7}{4.5}=1 . \overline{5} \text { radians } \\
& =1 . \overline{5} \times\left(\frac{180^{\circ}}{\pi}\right) \\
& =89.1^{\circ}
\end{aligned}
$$

TB p 176: 12ac, 13

WB Groups - Arc Length

4.2 The Unit Circle

A circle is the set of all points that are a certain distance, radius, from a given point, the center. Using the Pythagorean Theorem, we can get an equation
for a circle.
The equation for a circle with center $(0,0)$ and radius r is:

$$
x^{2}+y^{2}=r^{2}
$$

Try
a) Find the equation of this circle.

b) Sketch the graph of $x^{2}+y^{2}=64$

Unit Circle
If we choose $r=1$, wet a circle with radius 1 unit in length. This is called the unit circle, and its equation is $x^{2}+y^{2}=1$.

$$
x^{2}+y^{2}=1^{2}
$$

a) Is the point $(0.6,0.4)$ on the unit circle?

$$
x \int_{y} \text { susstizti: }
$$

no

$$
x^{2}+y^{2}=1
$$

$(0.6)^{2}+(0.4)^{2}=0.52 \neq 1$ b) The point below is on the unit circe. Use the unit circle

$$
\begin{aligned}
x^{2}+y^{2} & =1 \\
x^{2}+\left(\frac{1}{2}\right)^{2} & =1 \\
x^{2}+\frac{1}{4} & =1 \\
x^{2} & =\frac{4}{4}-1 / 4 \\
\sqrt{x^{2}} & =\sqrt{\frac{3}{4}} \quad x= \pm \sqrt{\frac{3}{4}}= \pm \sqrt{\sqrt{3}}=\frac{ \pm \sqrt{3}}{2}
\end{aligned}
$$

Pre-Calc 12 - Unit 2
 Page 12

On the unit circle below, we have a point P, with coordinates $(0.8,0.6)$. We draw a line segment connecting P to the origin, $(0,0)$. This radius and the x-axis form a standard position angle, which we call θ. Because this is an accurate drawing, we could use a protractor and get the size of angle θ-it is about 36.87°. By drawing in a line segment that connects P to the x-axis, we create a right-triangle, with the right-angle on the x-axis

From the diagram, we get:

$$
\begin{array}{rlr}
\cos \theta=\frac{a d j}{h y p}=\frac{0.8}{1}=0.8 & \tan \theta & =\frac{o p p}{a d j} \\
\sin \theta=\frac{a p p}{h y p}=\frac{0.6}{1}=0.6 & & =\frac{y}{x}
\end{array}
$$

Using the calculator, we get:

$$
\cos 36.87=0.799 \ldots=0.8
$$

$$
\sin 36.87=0.60000142 \doteq 0.6
$$

> Let $P(\theta)=(x, y)$ be the point where the terminal arm of a standard-position angle θ intersects the unit circle. Then we know:
> - the x-coordinate's value is equal to the cosine of the angle
> - the y-coordinate's value is equal to the sine of the angle $\begin{aligned} & x=\cos \theta \\ & y=\sin \theta\end{aligned}$

We now have a way to find sine and cosine values for ANY angle, including:

- negative angles
- 0^{7}
- angles larger than $90^{\circ} \quad$ http://www.malinc.se/math/trigonometry/unitcircleen.php

Using the triangle definitions (SOHCAHTOA) for those types of angles doesn't really make sense. For example, what would be the adjacent, opposite, and hypotenuse lengths for an angle measuring 0° ?

Try - NO calculator. (You don't need it! You can figure them out yourself?)
$P\left(0^{\circ}\right)=(1,0)$
$\cos \left(0^{\circ}\right)=x$-cordinuts
$\sin \left(0^{\circ}\right)=0$
point 0^{0} intreseds
where
the umbras

$$
P\left(\frac{3 \pi}{2}\right)=(0,-1)
$$

$\sin \left(\frac{3 \pi}{2}\right)=-1$
$\cos \left(\frac{3 \pi}{2}\right)=0$

Finding Approximate Values of Trigonometric Ratios
Estimate each value using the graph at right. Compare with the calculator answer, correct to 4 decimal places.

a) $\cos 250^{\circ}=-0.3$	$\sin 250^{\circ}=$
$X-$ coodinat1	
b) $\cos 500^{\circ}=$	$\sin 500^{\circ}=$

c) $\cos \left(-10^{\circ}\right)=0.99 \quad \sin \left(-10^{\circ}\right)=-0.2$

http://www.malinc.se/math/trigonometry/unitcircleen.php

Special Triangle Angles

Besides the quadrantal angles, there are some other angles for which we can find exact
coordinates for $P(\theta)$. These angles relate to special triangles.
Remember special triangles?

2

$$
\begin{aligned}
b^{2}+1^{2} & =2^{2} \\
b^{2}+1 & =4 \\
b^{2} & =3 \\
b & =\sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
1^{2}+1^{2} & =h^{2} \\
1+1 & =h^{2} \\
2 & =h^{2} \\
h & =\sqrt{2}
\end{aligned}
$$

Pre-Calc 12 - Unit 2

Page 14
Let's use those triangle angles in the unit circle setting. We need to adjust the size of the triangles, making their hypotenuse length $=1$

We know that the shortest side of a triangle is across from its smallest angle. This helps us label the coordinates correctly for different angles.

Try - NO calculator. Get the exact values.

$$
\cos \left(30^{\circ}\right)=x \text {-coordinate } \quad \sin \left(30^{\circ}\right)=\frac{1}{2}
$$

$$
=\frac{\sqrt{3}}{2}
$$

$$
\sin \left(135^{\circ}\right)=\frac{\sqrt{2}}{2} \quad \underset{x-\text { coord }}{\cos \left(135^{\circ}\right)}=\frac{-\sqrt{2}}{2}
$$

$$
\cos \left(300^{\circ}\right)=\frac{1}{2}
$$

$\sin \left(300^{\circ}\right)=$
$-\frac{\sqrt{3}}{2}$

Unit Circle Worksheet - fill in the front side only

TB p 186: 1c, 2ace, 3ac, 4, 5

For next class

Practice the ideas in 4.1-4.3

(4.2) p 186: 1c, 2ace, Sac, 4, 5
(4.3) p 201: 1-2(acegik), 3ace, 6ace, Pace, 10all, 11 all, 12ac

Trigonometry Practice \#1-3 (worksheets, posted on website)

Start working on Ch 4 Hand-in Assignment, \#1-10

Unit Circle videos

https://www.youtube.com/watch?v=a04EJzNWmK8
$=4$ minute video, first quadrant only

