Tonight's Class:

- Chapter 2 test return check quickly for any questions you have
- Unit 1 Test closed book, but can use both foldables
- Working through the rest of section 3.2
 - More factoring

b)
$$5 - \sqrt{3x - 8} = -3$$

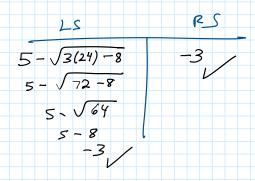
$$-5 \qquad -5$$

$$(-1\sqrt{3x - 8})^{2} = (-8)^{2}$$

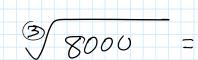
$$3x - 8 = 64$$

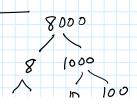
$$+8$$

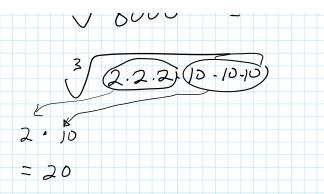
$$3x = 72$$

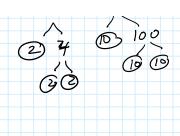

$$x = 8$$

$$x = 8$$


$$x = 72$$


$$x = 8$$


$$x = 24$$



p86 36)

Please

- Put away your phone and all materials except for the "foldables," a calculator, and something to write with.
- On your test, write clearly and show all necessary steps including on multiple-choice questions!
 When you are finished, please look over your test before handing it in.
- While other people are still finishing, respect them by being quiet. You can leave the classroom if you
 wish, but be back in time for the rest of class.

3.2 Factoring Polynomial Expressions (continued)

Focus: factor polynomial expressions that contain functions

Recap 8

WT p 193

Example 4

Factoring Using the Difference of Squares Pattern

Factor each polynomial expression.

We already did parts (a) and (b)

a)
$$4x^2 - 25y^2$$

b)
$$(2x-1)^2-(y+4)^2$$

c)
$$32(x+2)^2 - 18(2y-3)^2$$

C)
$$\frac{32(X+2)^2}{32(X+2)^2} - \frac{18(2y-3)^2}{4(2y-3)^2}$$
 1) always check for GCF

$$= 2\left[\frac{16(X+2)^2}{4(X+2)^2} - \frac{9(2y-3)^2}{4(X+2)^2}\right] = 2\left[\frac{16(X+2)^2}{4(X+2)} - \frac{9(2y-3)^2}{4(X+2)^2}\right] = 2\left[\frac{16(X+2)^2}{4(X+2)^2} - \frac{9(2y-3)^2}{4(X+2)^2}\right] = 2\left[\frac{16(X+2)^2}{4(X+2)^2} + \frac{3(2y-3)^2}{4(X+2)^2}\right] = 2\left[\frac{16(X+2)^2}{4(X+2)^2} + \frac{3(X+2)^2$$

Factoring Trinomials with Rational Coefficients (decimals/fractions)

Multiplying by "1" will help us out here!

Example 2

Factoring Trinomials with Rational Coefficients

Factor each trinomial.

a)
$$x^2 + 1.4x - 1.2$$

b)
$$3x^2 - \frac{29}{2}x + 14$$

a)
$$10(x^{2} + 1.4x - 1.2)$$

$$= \frac{1}{10} \left[10x^{2} + 14x - 12 \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$= \frac{1}{10} \left[2(5x^{2} + 7x - 6) \right]$$

$$=$$

Factoring Using Substitution

When you have equations which are not quadratic but take on a quadratic form

- use substitution to convert to a quadratic and factor it
- substitute back

Using Substitution to Factor
$$(x+y)^2 + 7(x+y) + 12$$
Let $(x+y)=z$

$$z^2 + 7z + 12$$

$$(z+3)(z+4)$$
Resubtitute:
$$(x+y+3)(x+y+4)$$

WT p 192

Example 3 Factoring Using a Trinomial Pattern

Factor each polynomial expression.

a)
$$x^2 - 6x - 16$$

b) $(x + 3)^2 - 6(x + 3) - 16$

$$6(3x-4)^{2} - 21(3x-4) + 15$$
let
$$A = 3x-4$$

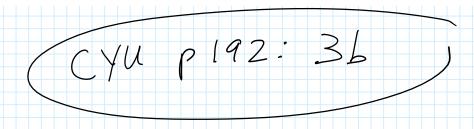
$$A = 3x-4$$

$$A = 3(2A^{2}-7A+5)$$

$$A = 3(2A^{2}-7A+5)$$

$$A = 3(2A^{2}-5A-2A+5)$$

$$A = 4(2A-5) - 1(2A-5)$$


$$A = 3(A-1)(2A-5)$$

$$A = 3(3x-4-1)(2(3x-4)-5)$$

$$A = 3(3x-5)(6x-8-5)$$

$$A = 3(3x-5)(6x-13)$$

$$A = 3(3x-5)(6x-13)$$

For next class

- Practice trinomial factoring until you feel comfortable with it (some worksheets are posted on the website)
- Finish worktext questions for 3.1 and 3.2
- If you think you want to do a unit test rewrite, prepare for that.