Class_09 May 17 Graphing Transformations of Sine and Cosine

## Plan For Todays

1. Question about anything from last class? 4.3-4.4
2. Start Chapter 5:
$\diamond$ 5.1s Graphing Sine and Cosine
$\diamond$ 5.2: Graphing Transformations on Sinusoidal Functions
$\diamond$ 5.3: Graphing Tangent Function
$\diamond$ 5.4: Equations and Graphs of Trig Functions
3. Work on practice questions from Textbook

## Plan Going Forwards <br> $$
x^{2}+y^{2}=1
$$



1. Finish working on Chapter 4 Assignment.

- CHAPTER 4 ASSIGNMENT DUE THURSDAY. MAY vOTH

2. Finish going through practice question from 5.1-5.2 in the textbook.

Work on the 5.1-5.2 Practice graphing handout - key posted on website.
3. You will finish Chapter 5 Trigonometry and start 6.1 Identities on Thursday (tomorrow). Have a look through the last sections in ch5 to prepare for tomorrow.

## SCHOOL CLOSED ON MONDAY, MAY 22RD FOR VICTORIA DAY LONG WEEKEDD

## CHAPTER 5 ASSIGNMENT DUE TUESDAY. MAY Z3RD

TEST 3 ON TUESDAY, MAY 23RD (ON 4.2-5.4 OMIT 5.3. 6.1)
Please let us know if you have any questions or concerns about your progress in this course.
The notes from today will be posted at egolfmath.weebly.com after class.
Anurita Dhiman = adhiman@sd35.bc.ca
Susana Egolf = segolf@sd35.bc.ca


- Ex: $\sin x-\sqrt{2}=-\sin x$
now add $\sin x$ to both sides.

$$
\begin{array}{ll}
2 \sin x-\sqrt{2}=0 & \text { add } \sqrt{2} \text { to both sides. } \\
2 \sin x=\sqrt{2} \longleftarrow & \text { divide by } 2 \text { (keep as fraction) } \\
\sin x=\frac{\sqrt{2}}{2} & \text { find angle with } \sin
\end{array}
$$

- Look only at the interval from $[0,2 \pi)$ to find angles
- Answers: $\frac{\pi}{4}$ and $\frac{3 \pi}{4}$
$\stackrel{\mathrm{S}}{\mathrm{T} \overbrace{\downarrow}^{\mathrm{S}}} \underset{\downarrow}{\mathrm{A}}$


## - How do you solve a problem involving factoring?

(Set equation equal to zero and then factor)
Ex: $\sin ^{2} x=2 \sin x$ $\qquad$ subtract $2 \sin x$

$$
\sin ^{2} x-2 \sin x=0
$$

$$
\longleftarrow \text { factor out } \sin x
$$

$$
\sin x(\sin x-2)=0 \longleftarrow \text { set each factor }=0
$$ $\sin x=0$

$$
\begin{gathered}
\sin x-2=0 \\
\sin x=2
\end{gathered}
$$

Look only at the interval from $[0,2 \pi)$

- Answers: $0, \pi$ only since $\sin x \neq 2$ ever


## Solving Trig Equations

- When solving trig equations, you will need to get the trig function isolated (by itself).
- Ex: $2 \sin x=1 \longleftarrow \quad$ Divide both sides by 2

$$
\sin x=\frac{1}{2} \quad \text { Use unit circle or inverse }
$$

We will limit our solutions to $[0,2 \pi$ ), and all answers must be in RADIANS ( $\pi$ form)
$30^{\circ}$ and $150^{\circ}=\frac{\pi}{6}$ and $\frac{5 \pi}{6}$


$$
\begin{array}{cc}
\text { Ex: } 4 \sin ^{2} x-3=0 & \text { now add } 3 \text { both sides. } \\
4 \sin ^{2} x=3 & \text { divide by } 4 . \\
\sin ^{2} x=\frac{3}{4} \longleftarrow & \text { take the } \sqrt{ } \text { of both sides. } \\
\sin x= \pm \sqrt{\frac{3}{4}} \longleftarrow \quad \text { use unit circle or calculator }
\end{array}
$$ Which angles have a sine value that is $\pm \frac{\sqrt{3}}{2}$ ?

- Answers: $\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}$

| S | A |
| :--- | :--- |
| T | C |

## Factoring Trigonometric Expressions

We can apply three basic factoring techniques:

- common factor
- difference of two squares
- factoring trinomials of the form $a x^{2}+b x+c$

Nore
Solving Quadratic Trigonometric Equations


- How do you solve problems of a quadratic type?
(Set equation equal to zero and then factor OR... quadratic formula)
$\mathrm{Ex}: 2 \sin ^{2} x-3 \sin x+1=0 \longleftarrow$ factor

$$
\begin{array}{cc}
(2 \sin x-1)(\sin x-1)=0 & \text { set each factor }=0 \\
(2 \sin x-1)=0 & \text { and }
\end{array}\left(\begin{array}{c}
\sin x-1)=0 \\
2 \sin x=1 \\
\sin x=\frac{1}{2}
\end{array}\right.
$$

Look only at the interval from $[0,2 \pi)$ to find angles
For $\sin 1 / 2 \rightarrow \frac{\pi}{6}, \frac{5 \pi}{6}$
For $\sin 1 \rightarrow \frac{\pi}{2}$

Solving Second-Degree Trigonometric Equations
When we solve equations with an exponent we usually start by factoring.
For example, solve: $2 x^{2}-1=x$

Example
Solve algebraically. If possible, give exact answers. Otherwise, give answers correct to one decimal place.

$$
\begin{aligned}
2 \tan ^{2} \theta-1 & =\tan \theta, \text { for } 0 \leq \theta<360 \\
-\tan \theta & \stackrel{\text { - }}{ } \text { - } n \theta
\end{aligned}
$$

$$
2 \tan ^{2} \theta-\tan \theta-1=0 \quad A C=-2
$$

$$
2 \tan ^{2} \theta-2 \tan \theta / \tan \theta-1=0 \quad{ }_{-2,1}-1
$$

$$
2 \tan \theta(\tan \theta-1)+(\tan \theta-1)=0
$$

$$
(\underbrace{2 \tan \theta+1})(\underbrace{\tan \theta-1})=0
$$

$$
2 \tan \theta+1=0 \quad-1 \quad \tan \theta-1=0
$$

$$
\tan \theta=\frac{-1}{2} \quad \tan \theta=1
$$

$$
\frac{y}{x}
$$

$$
\frac{y}{x}=1 \quad \underbrace{y=x}_{a+\frac{\pi}{4}, 45^{\circ}}
$$

no special QII, II QI
angles bbc

$$
\theta=45^{\circ}
$$

$$
b / c\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
$$

$$
\begin{array}{ll}
\tan \theta=-\frac{1}{2} & Q 1 I I \\
\text { is } \operatorname{not} \text { special } & \theta=180^{\circ}+45^{\circ}
\end{array}
$$

$$
\tan \theta=-\frac{1}{2}
$$

WII

$$
\begin{aligned}
& \text { use call. } \\
& \theta_{R}=\tan ^{-1}\left(\frac{1}{2}\right) \\
& A=2 L .6
\end{aligned}
$$

$$
\theta=225^{\circ}
$$

$$
\theta=45^{\circ}, 153.4^{\circ}, 225^{\circ}, 333.4^{\circ}
$$

$$
\begin{aligned}
& D_{Q I I}=153.4^{\circ} \\
& 360-26.6^{\circ}=333.4^{\circ}
\end{aligned}
$$

Example
Solve algebraically. If possible, give exact answers. Otherwise, give answers correct to one decimal place.

$$
\begin{aligned}
& 2 \cos ^{2} \theta-1=0 \text {, for } 0 \leq \theta<2 \pi \\
& \longrightarrow
\end{aligned}
$$

$$
2 \cos ^{2} \theta=\frac{1}{2}
$$



## 5.1-5.2 Graphing Sine \& Cosine \& Transformations

## Explore Learning Gizmo: (5 min per day)

 https://tinyurl.com/yckn3e3p


## Sine Function

Domain: $(-\infty, \infty) \quad$ Range: [ $-1,1$ ]
$y$-intercept: 0
$x$-intercepts: $n \pi, n \in \mathbb{Z}$
Continuity: continuous on $(-\infty, \infty)$
Symmetry: origin (odd function)
Extrema: maximum of 1 at
$x=\frac{\pi}{2}+2 n \pi \pi_{r} n \in \mathbb{Z}$
minimum of -1 at
$x=\frac{3 \pi}{2}+2 n \pi, n \in \mathbb{Z}$
End Behavior: $\lim _{x \rightarrow-\infty} \sin x$ and $\lim _{x \rightarrow \infty} \sin x$ do not exist.
Oscillation: between - 1 and 1


## Cosine Function

Domain: $(-\infty, \infty) \quad$ Range: $[-1,1]$
$y$-intercept: 1
$x$-intercepts: $\frac{\pi}{2} n, n \in \mathbb{Z}$
Continuity: continuous on ( $-\infty, \infty$ )
Symmetry: $y$-axis (even function)
Extrema: maximum of 1 at $x=2 n \pi$,
$n \in \mathbb{Z}$
minimum of -1 at $x=\pi+2 n \pi$, $n \in \mathbb{Z}$

End Behavior: $\quad \lim _{x \rightarrow-\infty} \cos x$ and $\lim _{x \rightarrow \infty} \cos x$ do not exist.
Oscillation: between-1 and 1


| Term | Definition/Explanation |
| :---: | :--- |
| Amplitude | Half the vertical distance from <br> the maximum height to the <br> minimum height of the function. |
| Interval | The domain of one cycle; <br> written as $\left[x_{b}, x_{e}\right]$, where $x_{b}$ is <br> the beginning and $x_{e}$ is the end. |
| Period | The horizontal length of one <br> repeating pattern of the <br> function. |
| Phase Shift or | The horizontal distancea <br> function is moved. |
| Vertical Shift | The vertical distance a function <br> is moved. |
| Interval | The horizontal starting point <br> and ending point of one <br> complete period of a cyclical <br> trigonometric function. |
| Mathguide.com |  |

Graphing Transformations on the Sine and Cosine Function
Steps:

1. Make sure the equation is written in standard transformation form:

- $y=a \sin b(x-c)+d$ and $y=a \cos b(x-c)+d$

2. List all characteristics (in radians or degrees depending on the question):

- Amplitude = a
- Vertical Displacement = d
- Period = 2pi/b
- Phase Shift = c

3. Determine the Midline, Maximum and Minimum for the y-axis scale based on the amplitude and vertical displacement.


$$
\begin{aligned}
& \text { Vertical Displacement } \\
& d=\frac{\text { Max }+ \text { Min }}{2} \quad \max =-1 \quad \min =-3 \\
& d=\frac{-1+(-3)}{2}=\frac{-4}{2}=-2
\end{aligned}
$$

Note: the same results occur for the function $y=\sin x$

Note: the same results occur for the function $y=\cos x$
4. Determine the period and phase shift for the x-axis scale.

- Use $4,6,8,12,16$ squares on the grid to equal the length of the period
- Divide the period by the number of squares to determine the length of one square then label the x-axis to easily find the phase shift

5. Place the first point at the beginning of the cycle at the phase shift.

- On the midline for sine
- On the max point for +cosine
- On the min point for -cosine

6. Divide the number of squares you gave for the length of the period by 4, then count that many squares for each max, midline and min point for one complete cycle.
7. Continue the pattern to graph at least 2 cycles.

$$
y=A \sin [B(x-C)]+D
$$

$|A|$ is the amplitude
The period is $\frac{2 \pi}{B}$
Phase (horizontal) shift is $C$


Vertical shift is $D$

The same applies for the Cosine Function.
For the Tangent Function, the period is $\frac{\pi}{B}$

## Transform Sine and Cosine Graphs

$y=A \sin (B(x-k))+c$
$y=A \cos (B(x-k))+c$
The amplitude is $|A|$
The period is $\frac{2 \pi}{|B|}$
k is horizontal shift c is vertical shift



## Chapter 5: Trigonometric Functions and Graphs

### 5.1 Graphing Sine and Cosine Functions

Let's track what happens to $P(\theta)$ as $\theta$, a standard-position angle, gets larger.




Maximum: 1 Minimum: 1

$$
\begin{aligned}
& \text { Range: } \\
& \{y \mid-1 \leqslant y \leqslant 1, y \in R\} \\
& \text { Period: } \\
& 2 \pi \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { Center line equation: } \\
& \text { (mo dine) } \\
& x y=0
\end{aligned}
$$

Pre-Calc 12 - Unit 2
Page 26


$y=\sin \theta \quad$ (also often written as $y=\sin x$ )

( 12 squares $\div 4=3$ sq per
quartercacte)


$$
\begin{array}{cccc}
\text { Maximum: } 1 & \text { Minimum: }-1 & \begin{array}{l}
\text { Range: } \\
\left.\sum y \mid-1 \leqslant y \leqslant 1, y \in R\right\}
\end{array} & \begin{array}{c}
\text { Amplitude: }
\end{array} \\
& \text { Domain: } \\
\{x \mid x \in R\} & 0 \text {-intercepts } & \begin{array}{l}
\text { Period: }
\end{array} & \text { Center line equati } \\
& 0,2 \pi & 2 \pi & y=0
\end{array}
$$

$$
\begin{array}{r}
\theta=x \quad \therefore \sin \theta=\sin x \quad \begin{array}{r}
\text { Pre-Calc } 12-\text { Unit } 2 \\
\text { Page } 27
\end{array} \\
y=\sin \theta \text { same os } y=\sin x
\end{array}
$$

Amplitude is the vertical distance from the center line of a trigonometric graph to its maximum or minimum. The untransformed graphs of $y=\sin x$ and $y=\cos x$ have amplitude 1 .


For $y=a \cos x$ or $y=a \sin x$

- vertical stretch, factor $a$
- amplitude $=|a|$
- if $a<0$, graph is reflected across $x$-axis
- amplitude $=\frac{|\max -\min |}{2}$


## Amplitude for graph shown at left? <br> $a n p=3$

Equation of the graph?

$$
y=3 \sin x
$$

## Period

is the horizontal length of one complete cycle. The untransformed graphs of $y=\sin x$ and $y=\cos x$ have a period length of $2 \pi$ (or $360^{\circ}$, if working in degree measure).


## HE OT 4

 For $y=\cos (b x)$ or $y=\sin (b x)$- horizontal stretch, factor $\frac{1}{b}$
- period $=\frac{2 \pi}{|b|}$ or $\left.\frac{360^{\circ}}{|b|}\right\}$ fermenla $p=\frac{2 \pi}{b} \rightarrow b=\frac{2 \pi}{p}$
- if $b<0$, graph is reflected across $y$-axis
Period for graph shown at left? $b=\frac{1}{4}$
$8 \pi$
Equation of the graph?

Since
graph's actual period $=\frac{2 \pi}{|b|}, \quad$ then $\quad|b|=\frac{2 \pi}{\text { graph's actual period }^{|c|}}$
$y=\cos \left(\frac{1}{4} x\right) \quad b=\frac{1}{4}$

If working in degrees, since
graph's actual period $=\frac{360^{\circ}}{|b|}, \quad$ then $\quad|b|=\frac{360^{\circ}}{\text { graph's actual period }^{\circ}}$

When sketching a period of a trigonometric function graph, we

- multiply the period length by $1 / 4$, to determine the spacing between key points
- plot key points: maximum, minimum, and center-line
- connect key points smoothly, getting a sinusoidal shape


## Try

la) $y=-3 \sin (5 x)$
amplitude: 3 period: $\frac{2 \pi}{5}$
key point spacing:
b) $y=-\frac{1}{4} \sin \left(\frac{1}{3} x\right)$
amplitude:
$\frac{1}{4}$
period: $2 \pi \times 3$
$=6 \pi$
normal period $=2 \pi \quad \begin{aligned} & \div 4\left(\frac{\pi}{2} \pi_{5} \frac{3 \pi}{2}, 2 \pi\right.\end{aligned}$
$\frac{2 \pi}{5} \div 4 \rightarrow \frac{2 \pi}{5} \times \frac{1}{4}=\frac{\pi}{10}$
key point spacing:

$$
6 \pi \div 4=\frac{3 \pi}{2}
$$

$2 \pi \rightarrow 10 \pi$ HE \$5
2. Write the equation of a function with these characteristics. a) sine function; $\mathrm{amp}=3$, period $=\pi$
b) cosine function, $\mathrm{amp}=2.4$, period $=10 \pi$

3. For each equation below, accurately sketch one period of its graph. Give the coordinates of 5 key points.



$$
p=\pi \div 4 \rightarrow \text { key points }_{t}
$$


$125 q$
$\div 4^{2}$

$=3 \mathrm{sq}$

### 5.2 More Transformations of Sinusoidal Functions

Vertical Displacement
is the amount of vertical translation (up/down) a sinusoidal graph moves


For $y=a \cos x+d$ or $y=a \sin x+d$

- vertical displacement, $d$ units
- center ling is located at $y=d$
- when we have no equation, we can figure out the vertical displacement from the graph:

$\therefore b=1$
Vertical displacement for this graph? $5 \mathrm{up}=\operatorname{mid}$ leno
Equation of this graph?



## Phase Shift

is the amount of horizontal translation (left/right) a sinusoidal graph moves

amp $=1$ period $=2 i \pi \rightarrow b=1$
$V D$
Centreing $\rightarrow y=0$

For $y=\cos (x-c)$ or $y=\sin (x-c)$

- phase shift, $c$ units
- when we have no equation, we use the graph to find the phase shift.

Choose a period of either sine or cosine that begins near the $y$-axis. Identify how much it has moved left/right compared to the basic (untransformed) graph.
For the graph above, find its equation in the form: $y=\sin (x-c) \rightarrow y=\sin \left(x-\frac{\pi}{6}\right)$
For the graph above, find its equation in the form: $y=\cos (x-c) \rightarrow y=\cos \left(x-\frac{2 \pi}{3}\right)$


Try
Determine the amplitude, period, phase shift and vertical displacement.
a) $y=5 \cos \left(3\left(x+\frac{\pi}{4}\right)\right)+2$

TRy
b) $y=\frac{1}{2} \cos \left(x+80^{\circ}\right)+5$
c) $y=-2 \sin \left(5 x-\frac{\pi}{3}\right)+4$

## Sketching a Sinusoidal Graph

Consider the equation: $\quad y=3 \sin \left(\frac{2 \pi}{12}(x+5)\right)-1$
a) Key features:

| basic sine shape | vertical displacement | equation of center line |
| :--- | :--- | :--- |
| amplitude | maximum | minimum |
| period | spacing | phase shift |

b) Accurately sketch one period of the graph. Give the coordinates of 5 key points. Include the center line on your sketch.



## Finding the Equation of a Graph

Sine and cosine graphs are both called sinusoidal graphs.

- For any sinusoidal graph, it is possible to write a sine equation that creates that graph, and a cosine equation that creates that same graph.
- There are many different equations that generate the same sinusoidal graph.


## Example

Give two different equations that create this graph.


Maximum:
Minimum:

Center line:
Vertical displacement:

Amplitude:
Period:
$b$ value:

Possible sine equation:

Possible cosine equation:

