Tonight's Class:

- Grab a white board, pen and eraser
4.3 Trig Ratios
4.4 Trigonometric Equations

Approximate dates for Chapter Tests and Unit Tests
Please note, these dates may change during the semester

	Topic	Test Date
	Function Transformations (Ch 1)	Tuesday, Sep 20
Unit 1	Transformations \& Polynomial Functions	Thursday, Sep 29
	Trigonometry \& the Unit Circle (Ch 4)	Tuesday. Ot 11- Thursday, Oct 13
	Trig Functions \& Graphs (Ch 5)	Tuesday, Oct 25

Quick Check-in - individual whiteboard

A circle has radius 40 cm . What is the arc length subtended by a central angle that measures $\mathbf{2 8 0}$ degrees? Give answer correct to 1 decimal place

A Trick to Remember Values on The Unit Circle

WB -
Use your unit circle to find these values exactly. Don't use a calculator.

1. $\sin 30^{\circ}=\frac{1}{2}$
2. $\sin 225^{\circ}=-\frac{\sqrt{2}}{2}$
3. $\sin 240^{\circ}=-\frac{\sqrt{3}}{2}$
4. $\sin 45^{\circ}=\frac{\sqrt{2}}{2}$
5. $\sin 150^{\circ}=\frac{1}{2}$
6. $\sin 300^{\circ}=-\frac{\sqrt{3}}{2}$
7. $\sin 0^{\circ}=0$
8. $\sin 390^{\circ}=\frac{1}{2}$
9. $\sin 270^{\circ}=-1$
10. $\sin 210^{\circ}=-\frac{1}{2}$
11. $\sin 180^{\circ}$
$=0$
12. $\sin 330^{\circ}$
$-\frac{1}{2}$

$$
\begin{array}{ll}
\text { 1. } \cos 0=1 & \text { cos } \theta=x \text {-coordinch } \\
\text { 4. } \cos \left(\frac{7 \pi}{6}\right)=-\frac{\sqrt{3}}{2} & \text { 3. } \cos \left(\frac{\pi}{3}\right)=\frac{1}{2} \\
\text { 7. } \cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2} & \text { 5. } \cos \left(\frac{3 \pi}{2}\right)=0
\end{array} \begin{array}{ll}
\text { (6) } \cos \left(\frac{3 \pi}{4}\right)=-\frac{\sqrt{2}}{2} \\
\text { 10. } \cos \left(\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2} & \text { 8. } \cos \left(\frac{4 \pi}{3}\right)=\frac{1}{2}
\end{array} \text { 9. } \cos \left(\frac{11 \pi}{6}\right)=\frac{\sqrt{3}}{2}
$$

4.3 Trigonometric Ratios

We can use the unit circle diagram to get definitions for sill of the trigonometric ratios.

Primary Ratios Reciprocal Ratios

$$
\begin{array}{ll}
\sin \theta=\frac{y}{1}=y & \csc \theta=\frac{1}{y} \\
\cos \theta=\frac{x}{1}=x & \sec \theta=\frac{1}{x} \\
\tan \theta=\frac{y}{x} & \cot \theta=\frac{x}{y}
\end{array}
$$

More Exact Values - Use the unit circle to find each exact value - no calculator!

a) | $\cos (\pi)$ | $\left.=\begin{array}{ll}(x-\text { cord }) \\ -1 & \sin (\pi)\end{array}\right)=0$ | $\tan (\pi)$ | $=\frac{y}{x}=\frac{0}{-1}$ |
| ---: | :--- | ---: | :--- |
| $\sec (\pi)$ | $=\frac{1}{-1}$ | $\csc (\pi)$ | $=\frac{1}{0}$ |
| | $=-1$ | | $=0$ |

Sometimes the radius is not 1 . Here are the ratio definitions that work for any r value.
$\left.\begin{array}{l}\begin{array}{l}\text { Primary Ratios } \\ \sin \theta=\frac{y}{r} \\ \csc \theta=\frac{r}{r} \\ \cos \theta=\frac{x}{y} \\ \tan \theta=\frac{y}{x} \\ \cot \theta\end{array} \\ \cot \theta=\frac{r}{x} \\ y\end{array}\right]$

Example

The teroxinal arm of a standard position angle θ contains the point $(-2,-5)$. Find the value of all six trigonometric ratios for angle θ. You do not need to find the size of angle θ. Leave answers inexact fractional form.

The angle terminates in quadrant
3
$x=-2$
$\begin{aligned} & x^{2}+y^{2}=r^{2} \\ &(-2)^{2}+(-5)^{2}=r^{2} \\ & 4+25=r^{2} \\ & 29=r^{2} \\ & r=\sqrt{29}\end{aligned}$

$r=\sqrt{29}$

$$
\begin{aligned}
& \left.\sin \theta=\frac{y}{r}=\frac{-5}{\sqrt{29}} \times \frac{\sqrt{29}}{\sqrt{29}}=\frac{-5 \sqrt{29}}{29} \right\rvert\, \csc \theta=\frac{r}{y}=\frac{\sqrt{29}}{-5} \\
& \cos \theta=\frac{x}{r}=\frac{-2}{\sqrt{29}} \\
& \sec \theta=\frac{r}{x}=\frac{\sqrt{29}}{-2} \\
& \tan \theta=\frac{y}{x}=\frac{-5}{-2}=\frac{5}{2} \quad \cot \theta=\frac{x}{y}=\frac{-2}{-5}=\frac{2}{5}
\end{aligned}
$$

$$
\begin{array}{r}
\text { Pre-Calc } 12 \text { - Unit } 2 \\
\text { Page } 17
\end{array}
$$

Page 17

Finding the Signs of the Trigonometric Ratios

How can we predict whether a specific trigonometric ratio will be positive or negative?

Example
Given the information below, decide in which quadrant (or quadrants) angle θ can terminate.

$$
\begin{aligned}
& \begin{array}{l}
x^{2}+y^{2}=r^{2} \\
(-3)^{2}+(4)^{2}=r^{2} \\
9+\left(6=r^{2}\right. \\
25=r^{2},
\end{array} \quad \sec \theta=\frac{r}{x} \quad \cos \theta=\frac{x}{r} \\
& \sec \theta=\frac{5}{-3}
\end{aligned}
$$

Approximate Values

For angles not related to special angles, calculators can give us accurate approximations.

Try

Evaluate each of the following ratios correct to 4 decimal places, using a calculator.
a) $\tan \left(-65^{\circ}\right)=-2.1445$
b) $\sec 417^{\circ}=\frac{1}{\cos 417^{\circ}}=1.8361$
c) $\cot \left(\frac{3 \pi}{5}\right)=\frac{1}{\tan \left(\frac{3 \pi}{5}\right)}=-0.3249$
d) $\cos (4) \doteq-0.6536$
7
radians,
notecases!
e) $\sin (-200) \cong 0.3420$

$$
\text { f) } \csc \left(\frac{4 \pi}{7}\right)=\frac{1}{\sin \left(\frac{4 \pi}{7}\right)} \doteq 1.0257
$$

Use the correct mode - either degrees or radians, matching the angle's units.
Be careful when evaluating reciprocal ratios.
Don't take the reciprocal of the angle!
Instead, use these relationships:

$$
\begin{aligned}
& \csc (\text { angle })=\frac{1}{\sin (\text { angle })} \\
& \cot (\text { angle })=\frac{1}{\tan (\text { angle })} \\
& \sec (\text { angle })=\frac{1}{\cos (\text { angle })}
\end{aligned}
$$

TB 4.3 p 201: 1-2(acegik), 3ace, Wace, Pace, 12ac

Use your unit circle to solve these equations:

$$
\text { 1. } \sin \theta=\frac{\sqrt{3}}{2}, 0^{\circ} \leq \theta<90^{\circ}
$$

2. $\sin \theta=\frac{\sqrt{3}}{2}, 0^{\circ} \leq \theta<360^{\circ}$
60° and 120°
3. $\cos \theta=\frac{\sqrt{2}}{2}, 0^{\circ} \leq \theta<360^{\circ}$
4. $\cos \theta=\frac{\sqrt{2}}{2}, 0^{\circ} \leq \theta<90^{\circ}$
x ad. 45°

45°
315°

Pre-Calc 12 - Unit 2
 Page 19

Now we look at the opposite situation. Given the value of a trigonometric ratio, how do we find out the size of the angle? This is a process that works well:

स Isolate - Decide - Get Reference Angle - Solve

See page 21.

Examples Solve algebraically. If possible, give exact answers. Otherwise, give answers correct to one decimal place.
\square domain tell is which mock to use
a) $\sin \theta-0.8=0$, for $0 \leq \theta<360^{\circ}$

1) isolate tres function:

$$
\begin{aligned}
\sin \theta-0.8 & =0 \\
+0.8 & +0.8 \\
\sin \theta & =0.8
\end{aligned}
$$

b) $\cos \theta=-1$, for $-\pi \leq \theta<2 \pi$

isolate

decide $Q 2, Q 3$ unit $\begin{aligned} & \text { circle }\end{aligned}$
$\frac{\checkmark}{r}$

$\frac{\text { Try: }}{4 \cos \theta-1=0,0 \leqslant \theta<360^{\circ}}$

1) Isolate the trigonometric term. If it uses cot, sec, or csc, take the reciprocal of both sides of the equation to get a simpler-to-solve version of the equation.
2) Decide whether the equation can be solved using

- special angles on the unit circle. Look for: $0, \pm 1, \pm \frac{1}{2}, \pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{3}}{2}$
- the $\sin ^{-1}, \cos ^{-1}$ or $\tan ^{-1}$ button on the calculator
- OR, cannot be solved

3) Determine in which quadrants answers will be found.
4) Find the reference angle and use it to find all the solutions in the given domain. Use the same units (either degrees or radians) as shown in the question's domain.
$\rightarrow \quad Q_{2}=126.9^{\circ}$
5) decide fin which quedrutb can the hopple? $Q 1, Q_{2}$ (call.) or unit circle
6) reforace angle: $\sin ^{-1}(\sin \theta)=\sin ^{-1}(0.8)$

$$
\theta_{R}=\sin ^{-1}(0.8) \text { decree mode } \doteq 53.1^{\circ}
$$

isolate $4 \cos \theta=1$

$$
\cos \theta=\frac{1}{4}
$$

decide Q1,Q4 use call.
ref. $\theta_{R}=\cos ^{-1}\left(\frac{1}{4}\right)$

$$
=75,522 \ldots 0
$$

solve: $Q_{1} \pm 75.5^{\circ} \quad Q_{4}=\begin{aligned} & 360^{\circ}-\theta_{R} \\ & =2845^{\circ}\end{aligned}$
c) $3 \cos \theta-12=0$, for $0 \leq \theta<2 \pi$
isolate $\frac{3 \cos \theta=\frac{12}{3}}{3}$

$$
\cos \theta=4
$$

ref.angle $Q_{R}=\cos ^{-1}(4)$
impossible!

decide Q1, Q4, use call.
d) $3 \tan \theta-3=0$, for $0 \leq \theta<2 \pi \quad$ radians
isolate

$$
\begin{aligned}
\frac{3}{3} \tan \theta & =\frac{3}{3} \\
\tan \theta & =1
\end{aligned}
$$

$\xrightarrow{\text { decide }} Q(, Q 3$ wit circle :

$$
\text { Solve } Q_{1}=\pi / 4 \quad Q_{3}=5 \frac{\pi}{4}
$$

e) $3 \sec \theta-10=0$, roses degrees
-16

$$
3 \operatorname{ces} \theta=10
$$

e) $3 \sec \theta-10=0,10 \cdots$
isolate

$$
\begin{aligned}
\frac{3}{3} \sec \theta & =\frac{10}{3} \\
\sec \theta & =\frac{10}{3} \\
\frac{1}{\cos \theta} & =\frac{10}{3} \\
\cos \theta & =\frac{3}{10}
\end{aligned}
$$

decide
ref

$$
\begin{aligned}
& Q 1, Q 4 \text { call. } \\
& \theta_{R}=\cos ^{-1}\left(\frac{3}{10}\right) \\
& \\
& =72.54 \ldots
\end{aligned}
$$

$$
Q_{4} \pm 360^{\circ}-\theta_{R}
$$

$$
\begin{aligned}
& \text { other } \\
& \begin{aligned}
Q_{1} & =725^{\circ} \\
& +360^{\circ} \\
= & 4325^{\circ}
\end{aligned}
\end{aligned}
$$

$$
=287.5^{\circ}
$$

Coming up

Starting Chapter 5 next class (trigonometric graphs)

- Complete the Chapter 4 hand-in, except for \#14befg, please wait on those.
- Prepare for the Chapter 4 Test, Thursday, Oct 13

More Practice
Worksheet: More Chapter 4 Review, found on website (with solutions)
Worksheet: Trig Practice \#4, on website (with solutions)
(4.3) p 201: 1-2(acegik), 3ace, Wace, Pace, 10all, 11 all, 12ac
(4.4) p 211: 3-4, Face

Chapter 4 Test Thursday, Oct 13 - includes a "no-calculator" section.
Make sure you can:

- Convert between radians and degrees
- Draw angles (in radians or degrees) in standard position
- Decide which quadrant an angle belongs to
- Determine coterminal angles
- Determine reference angles
- Solve problems involving arc length
- Use special triangle values to find EXACT values
- Use the unit circle
- Find exact values of trig ratios
- Solve trigonometric equations

You will have a sheet
like this when you
write the test.

CHAPTER 4 - formula sheet

$\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta} \quad \tan \theta=\frac{\sin \theta}{\cos \theta}$
Quadratic Formula: \quad Arc Length Formula: $\quad a=r \theta$
For $a x^{2}+b x+c=0, x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad$

