## Tonight's Class:

- Unit 1 Test return and rewrite sign-up
- Working through 3.3-3.6
- Solving quadratic equations by factoring
- Solving quadratic equations by square-rooting
- Solving quadratic equations using quadratic formula

Here is a filled-in version of what I had planned to do with the class on Tuesday, February 7.

### 3.3 Solving Quadratic Equations by Factoring <br> Focus: apply factoring strategies to solve quadratic equations

The next few sections look at ways to solve quadratic equations

- What is a quadratic equation?


## Quadratic Equation

A quadratic equation is any equation that can be written in the form $a x^{2}+b x+c=0$, where $a, b$, and $c$ are constants and $a \neq 0$.

- We know that solving is finding values of "x" that make the equation true. We solve linear equations by collecting the constants, collecting the variables, and isolating. The process for solving quadratic equations is different.

For example, look at this quadratic equation:

$$
x^{2}-5 x-36=0
$$

If we try to isolate " $x$ ", we run into trouble. We might get one of these two results, but neither gives us what we need:

$$
\begin{equation*}
\text { Not helpful: } x=\frac{x^{2}-36}{5} \quad \text { OR } \quad x= \pm \sqrt{5 x+36} \tag{OR}
\end{equation*}
$$

## Instead, we will

collect all terms to one side of the equation, so zero is on the other side
FACTOR
Set each factor equal to zero, and solve for $x$

WT, page 205

## Example 1 Solving Quadratic Equations by Factoring

Solve each equation, then verify the solution.
a) $x^{2}-2 x-8=0$
b) $(2 x-3)(x+1)=3$
a) $x^{2}-2 x-8=0$

$$
\begin{aligned}
& (x+2)(x-4)=0 \\
& {\left[\begin{array}{r}
\text { If } a b=0 \text {, we know } a=0, b=0 \text {, or both } \\
a \text { and }
\end{array}\right) b=0 \text {. This is called the ZERO Probe }} \\
& a \text { and } b=0 \text {. This es called the ZERO Property.] } \\
& x=-2 \\
& x-4=0 \\
& x=4
\end{aligned}
$$

Like always, we can check solutions by substituting buck into the original equation: $x^{2}-2 x-8=0$

$$
\begin{array}{r}
(-2)^{2}-2(-2)-8=4+4-8=0 \\
\text { and }(4)^{2}-2(4)-8=16-8-8=0
\end{array}
$$

now, FACTOR

$$
\left.\begin{array}{rl}
A C & =2(-6) \\
& =-12 \\
\text { Product } & =-12 \\
\text { Sum } & =-1
\end{array}\right\}
$$

$$
\begin{aligned}
& 2 x^{2}-4 x+3 x-6=0 \\
& 2 x(x-2)+3(x-2)=0 \\
& (x-2)(2 x+3)=0
\end{aligned}
$$

set each factor equal to zero and solve for $x$

$$
\begin{array}{r}
x-2=0 \\
x=2
\end{array}
$$

Can check by substituting in.

$$
\begin{aligned}
2 x+3 & =0 \\
2 x & =-\frac{3}{2} \\
x & =\frac{-3}{2}
\end{aligned}
$$

WT, page 206
Example 2 a Common Factor

Solve each equation, then verify the solution.
a) $2 x^{2}+18=12 x$
b) $2 x^{2}=4 x$
a) $2 x^{2}+18=12 x$

COLLECT all terms to one side?

$$
\begin{aligned}
2 x^{2}+18 & =12 x \\
-12 x & =-12 x \\
2 x^{2}-12 x+18 & =0
\end{aligned}
$$

FACTOR

$$
2\left(x^{2}-6 x+9\right)=0
$$

$$
2(x-3)(x-3)=0
$$

SET each factor equal to zero
equal zero,

$$
x-3=0
$$

$$
x=3
$$

b) $2 x^{2}=4 x$

COLLECT

$$
\begin{aligned}
2 x^{2} & =4 x \\
-4 x & -4 x
\end{aligned}
$$

$$
\begin{gathered}
2 x^{2}-4 x=0 \\
\hline \text { FACTOR } 2 x(x-2)=0 \\
\hline \text { SET to Jer } \\
\frac{2 x}{2}=\frac{0}{2} \\
\hline x-2=0
\end{gathered}
$$

WT, page 207

Example 3 Solving a Radical Equation
Solve this equation, then verify the solution: $\sqrt{x+3}-1=x$

We've done this before. We start as usual:

1) find restrictions, using radicand $\geq 0$
2) isolate radical
3) square both sides

$$
\sqrt{x+3}-1=x
$$

restrictions
radicand $\geq 0$

$$
\begin{aligned}
& x+3 \geq 0 \\
& x \geq-3
\end{aligned}
$$

Our result is a quadratic equation, so we now need to

$$
v+2-v^{2}+2 x+1
$$

Our result is a quadratic equation, so we now need to
COLLECT

$$
\begin{array}{r}
x+3=x^{2}+2 x+1 \\
-x-3+-3 \\
-x+1
\end{array}
$$

$$
\begin{array}{lcc}
\text { FACTOR } & x^{2}+x-2=0 \\
(x-1)(x+2)=0 \\
\text { SET to 0 } & (x+1=0 & x+2=0 \\
x=1 & x=-2
\end{array}
$$

Were done everything correctly, but it's $100 \%$ necessary to Check these solutions in the original. The reason is that when we square both sides, we can often end up with EXTRANEOUS roots. These are answers that are solutions to the equation we get after squaring, but not solutions of the original equation.

VERIFY in original equation

$$
\sqrt{x+3}-1=x
$$


solution

$$
x=-2
$$

$$
\begin{array}{r}
\sqrt{-2+3}
\end{array} \begin{array}{r}
-1 \\
\sqrt{1} \\
-1
\end{array}
$$



$$
R S
$$

$$
1-1
$$

$$
0
$$

3.4 Using Square Roots to Solve Quadratic Equations

Focus: use strategies of determining square roots to solve quadratic equations

We are looking at only one small part of this section. It also talks about

Some quadratic equations can be written very simply, in the form


These equations can be solved in two different ways:

1) Expanding the left side, collecting all terms to one side and factoring OR
2) Square-rooting both sides

$$
x^{2}-64=0
$$

## Factoring Method

$$
\begin{aligned}
& x^{2}-64=0 \\
& (x+8)(x-8)=0 \\
& x+8=0 \quad x-8=0 \\
& x=-8 \quad x=8
\end{aligned}
$$

Square-rooting Method

$$
\begin{aligned}
& x^{2}-64=0 \\
& x^{2}=64 \\
& \sqrt{x^{2}}=\sqrt{64} \\
& x= \pm 8 \text { which means } \begin{array}{l}
x=8 \\
\text { and } \\
x=-8
\end{array}
\end{aligned}
$$

## WT, page 217

## Example 1 

Solve each equation. Verify the solution.
a) $2 x^{2}-1=5$
b) $(x-4)^{2}=12$
a) $2 x^{2}-1=5$

$$
+1 \quad+1
$$

## isolate

squared term

$$
\begin{aligned}
\frac{2 x^{2}}{2} & =\frac{6}{2} \\
x^{2} & =3
\end{aligned}
$$

$$
x^{2}=3
$$

$\begin{array}{ll}\begin{array}{c}\text { squar-root } \\ \text { both ides } \\ \text { sides }\end{array} & x=3 \\ x^{2} & = \pm \sqrt{3}\end{array}$
b)

$$
(x-4)^{2}=12
$$

$$
\begin{aligned}
& \text { isolate } \\
& \text { square } \\
& \text { stern is!). } \\
& \text { (already }
\end{aligned}
$$

squar-rot
both
sid

$$
\sqrt{(x-4)^{2}} \pm \sqrt{12}
$$

$$
x-4= \pm \sqrt{12}
$$

$$
\begin{array}{cc}
\text { isolate } & x-4=+ \pm \sqrt{12} \\
x & +4
\end{array}
$$

$$
x=4 \pm \sqrt{12}
$$

$$
x= \pm \sqrt{12}+4
$$

* only doing \#4, p222-223
3.5 Using the Quadratic Formula to Solve Quadratic Equations

Focus: use the quadratic formula to solve quadratic equations

When a quadratic equation does not factor, we can solve it by using the quadratic formula. (This formula is derived on page 232 of the work text.)

## Quadratic Formula

$$
\begin{gathered}
a x^{2}+b x+c=0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

The Quadratic Formula Song


## Example 1 Solving a Quadratic Equation of the Form

 $x^{2}+b x+c=0$Solve each equation.

1. Solve each equation.
a) $x^{2}+2 x+7=0$
b) $x^{2}-2 x-7=0$
a) $x^{2}+4 x-1=0$

$$
\begin{aligned}
& a=1 \\
& b=4 \\
& c=-1
\end{aligned}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{aligned}
x & =\frac{-4 \pm \sqrt{(4)^{2}-(4)(1)(-1)}}{2(1)} \\
& =\frac{-4 \pm \sqrt{16-(-4)}}{2}
\end{aligned}
$$

$$
=\frac{-4 \pm \sqrt{20}}{2}+\begin{gathered}
\text { simplify radical if } \\
\text { possible }
\end{gathered}
$$

$$
=\frac{-4 \pm \sqrt{4 \cdot 5}}{2}
$$

$$
=-4 \pm 2 \sqrt{5}+\quad \text { if all the numbers } \quad 2
$$

$$
\begin{aligned}
& =\frac{2(-2 \pm 1 \sqrt{5})}{2(1)} \\
& =-2 \pm \sqrt{5} \\
& \text { these are the exact solutions } \\
& \begin{array}{l}
\text { If we are asked for approximate } \\
\text { solutions, we use the calculated }
\end{array} \\
& \text { to get: } x=0.236,-4.236
\end{aligned}
$$

b) $x^{2}-x+4=0$

$$
\begin{aligned}
& a=1 \\
& b=-1 \\
& c=4
\end{aligned} \quad X=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{aligned}
& x=\frac{-(-1) \pm \sqrt{(-1)^{2}-(4)(1)(4)}}{2(1)} \\
&=\frac{1 \pm \sqrt{1-16}}{2} \\
&=\frac{1 \pm \sqrt{-15}}{2} \text { not a real number) } \\
& \text { no solution, } \\
& \text { no real roots }
\end{aligned}
$$

## WT p 234 US

Check Your Understanding
2. Solve each equation.
a) $(2 x+1)(x-1)=5 x$
b) $\frac{1}{2} x^{2}-\frac{5}{4} x=3$
$\theta$

## Example 2 Solving a Quadratic Equation of the Form

 $a x^{2}+b x+c=0$Solve each equation.
a) $2 x=3(x-1)(x+1)$
b) $\frac{2}{3} x^{2}+1=\frac{5}{6} x$
a) $\left(\begin{array}{l}2 x=3(x-1)(x+1) \\ 2 x=3\left(x^{2}+x-x-1\right)\end{array}\right.$

$$
\begin{aligned}
& \text { a) } 2 x=3(x-1) \cdots \cdots \cdot 1 \\
& 2 x=3\left(x^{2}+x-x-1\right) \\
& 2 x=3\left(x^{2}-1\right) \\
& \begin{array}{l}
\text { collect } \\
\text { all }
\end{array} \\
& \text { terms } \\
& \text { to } \\
& \begin{array}{c}
\text { one } \\
\text { side }
\end{array} \\
& a=3 \\
& b=-2 \\
& c=-3 \\
& x=\frac{-(-2) \pm \sqrt{(-2)^{2}-(4)(3)(-3)}}{2(3)} \\
& =\frac{2 \pm \sqrt{4+36}}{6} \\
& =\frac{2 \pm \sqrt{40}}{6} \\
& =\frac{2 \pm \sqrt{4 \cdot 10}}{6} \\
& =\frac{2^{i^{2}} \pm 2^{2} \sqrt{10}}{6^{i 2}} \\
& =\frac{1 \pm \sqrt{10}}{3} \\
& \text { b) } \frac{2}{3} x^{2}+1=\frac{5}{6} x \\
& -\frac{5}{6} x \quad-\frac{5}{6} x \\
& \frac{2}{3} x^{2}-\frac{5}{6} x+1=0
\end{aligned}
$$

Notice that the a -value and b -value are both fractions, which makes computations harder.
It's always true that if we multiply both sides of an equation by the same number, the resulting equation has the same solutions as the original equation.

Let's multiply each side of the equation by "6" This is the number that would have been a common denominator for the fractions. Multiplying by 6 will get rid of all the fractions.

$$
6\left[\frac{2}{3} x^{2}-\frac{5}{6} x^{y}+1\right]=6[0]
$$

$$
\begin{array}{ll} 
& \begin{array}{l}
\frac{12}{3} x^{2}-\frac{30}{6} x+6 \\
\\
a=4 \\
b=-5 \\
b=-5 \\
c=6
\end{array} \\
4 x^{2}-5 x+6 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-5) \pm \sqrt{(-5)^{2}-(4)(4)(6)}}{2(4)} \\
& =\frac{5 \pm \sqrt{25-96}}{8} \\
& =\frac{5 \sqrt{-71}}{8} \text { not a real number no solution, } \\
&
\end{array}
$$

### 3.6 Interpreting the Discriminant

Focus: determine the number of solutions a quadratic equation has, without solving the equation

In the quadratic formula, the part under the square root is called the discriminant.

It identifies HOW MANY real solutions/roots a quadratic equation will have.


Whenever $D$ is a perfect square, the equation can be solved by factoring of a Quadratic Equation

Without solving, determine whether the equation $5 x^{2}-8 x+6=0$
Check Your Understanding

1. Without solving, determine whether the equation

$$
a=S
$$

$$
b=-8
$$

$9 x^{2}-6 x+1=0$ has one,

$$
c=6
$$

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =(-8)^{2}-(4)(5)(6) \\
& =64-120 \\
& =-56 \quad-56<0, \text { so } \begin{array}{c}
\text { no real } \\
\text { roots }
\end{array}
\end{aligned}
$$

Check Your Understanding
2. a) Determine the values of $k$ for which $2 x^{2}+7 x+k=0$ has no real roots.
b) Use one value of $k$ to write an equation that has no real roots.

To have two real roots,
a) $3 x^{2}-5 x+k=0$

$$
\begin{aligned}
& a=3 \\
& b=-5 \\
& c=k
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow(-5)^{2}-(4)(3)(k)>0 \\
25-12 k>0 \\
-25 \quad \frac{-12 k>-\frac{25}{-12}}{} \begin{array}{l}
\text { If } k<\frac{25}{12}, \\
\begin{array}{l}
\text { it has } \\
2 \text { real roots }
\end{array}
\end{array}
\end{gathered}
$$

b) Here is one possible equation with 2 real roots

$$
3 x^{2}-5 x+1=0
$$

We con choose any number smaller than $\frac{25}{82}$

For next class

- Work on the worktext questions for 3.3-3.6
- For section 3.4, ONLY do question \#4
- Start working on Chapter 3 Hand-in assignment, due Feb 14

