Class_10 May 18 Trig Graphs and Applications

Tonight's Class:

- Chapter 4 Hand-in Due
- 5.2 Transforming Trig Graphs (continued)
- 5.4 Trig Applications

$$
\text { Convert } 1040^{\circ} \times \frac{\pi}{180^{\circ}}=\frac{1040 \pi}{180}=\frac{104 \pi}{18}=\frac{52 \pi}{9}
$$

From the notes package, page 28:
b) $y=\frac{2}{2} \cos \left(\frac{1}{6} x\right)$ HE by 6

\qquad
Summary

Try
Determine the amplitude, period, phase shift and vertical displacement.
ny mos is
c) $y=-2 \sin \left(5 x-\frac{\pi}{3}\right)+4$

$$
a_{m p}=+2
$$

$$
\begin{array}{ll}
5\left(x-\frac{\pi}{15}\right) & \text { period }=\frac{2 \pi}{5} \\
5 x-\frac{5 \pi}{15} & \text { pis. }=\frac{\pi}{15} \\
\frac{\pi}{3} \div 5 & v \text { disp }=\text { up } \\
\frac{\pi}{3} \cdot \frac{1}{5} & \\
\frac{\pi}{15} &
\end{array}
$$

$$
\begin{aligned}
& \text { a) } y=5 \cos \left(3\left(x+\frac{\pi}{4}\right)\right)+2 \quad \text { amp }=5 \\
& \text { pend }=\frac{2 \pi}{b}=\frac{2 \pi}{3} \quad \text { pend }=\frac{2 \pi}{3} \\
& \text { pis. }=\frac{\pi}{4} \text { left or }-\frac{\pi}{4} \\
& \text { V.disp }=\text { up } 2 \\
& \text { b) } y=\frac{1}{2} \cos \left(x+80^{\circ}\right)+5 \\
& \operatorname{amp}=\frac{1}{2} \\
& \text { period }=360^{\circ} \\
& \text { iss. }=80^{\circ} \text { left, or }-80^{\circ} \\
& v \operatorname{disp}=\text { up } 5
\end{aligned}
$$

Sketching a Sinusoidal Graph
Consider the equation:

$$
y=3 \sin \left(\frac{2 \pi}{12}(x+5)\right)-1
$$

a) Key features:

b) Accurately sketch one period of the graph. Give the coordinates of 5 key points. Include the center line on your sketch.

1) plot cestelini
2) plot max + min on

$$
y \text {-cir }
$$

3) label x-axis

Finding the Equation of a Graph
Sine and cosine graphs are both called sinusoidal graphs.

- For any sinusoidal graph, it is possible to write a sine equation that creates that graph, and a cosine equation that creates that same graph.
- There are many different equations that generate the same sinusoidal graph.

Example
Give two different equations that create this graph.

Possible sine equation:

$$
\begin{aligned}
& y=3 \sin (2(x+\pi / 4))+1 \\
& y=-3 \sin (2(x-\pi / 4))+1
\end{aligned}
$$

(horizontal distance from MHX + nat $M+X$)

Possible cosine equation:

$$
\begin{aligned}
& y=3 \cos (2 x)+1 \\
& y=-3 \cos \left(2\left(x+\frac{2 \pi}{4}\right)\right)+1 \\
& \quad \text { or } \quad y=-3 \cos (2(x+\pi / 2))+1
\end{aligned}
$$

5.4 Trig Equations and Application Questions

Some equations cannot be solved algebraically. For this reason, we want to understand how to solve equations graphically.

Example: \quad Solve: $\cos 2 x-\frac{1}{2} x+\frac{1}{2}$, ijor $0 \leq x<2 \pi$.

Find the solutions to the equation

$$
\begin{aligned}
& \cos (2 x)=\frac{1}{2} x+\frac{1}{2}, \text { for } 0 \leq x<2 \pi \\
& X=-0.714 \quad X=0398 \\
& X=-2.073
\end{aligned}
$$

Pre-Calc 12 - Unit 2
 Page 35

5.4 Equations and Graphs of Trigonometric Functions

Below we see how we can solve a trigonometric equation, graphically.

a) What is the equation that is being solved? $\quad 3 \sin 2 x=$!
b) Thd windowhas beemrestrictey match the domain for this question What that do
c) How many solutions are there, in this domain? Mark them on the calculator graph screenshot, shown above. 4, they are the intersections of the 2 graphs

Remember, there are two ways to solve equations GRAPHICALLY

Try
Solve graphically, correct 1 decimal place. Include a sketch of the graph with the solutions marked on it.

Example
Consider the trigonometric equation $6 \sin \left(\frac{\pi}{4} x\right)+8=10$
a) Solve graphically for $0 \leq x<2 \pi$, correct to 4 decimal places. Include sketch of the graph with the solutions marked on it.
b) Find the general solution, algebraically, correct to 4 decimal places.

This affects lens th of the pernod.

$$
\frac{6 \sin }{6}\left(\frac{\pi}{4} x\right)=\frac{2}{6}
$$

$$
\sin (\pi / 4 x)=\frac{1}{3}
$$

$$
\begin{aligned}
\sin \theta & =\frac{1}{3} \\
\theta_{r} & =\sin ^{-1}\left(\frac{1}{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \pi / 4 x=\sin ^{-1}\left(\frac{1}{3}\right) \\
& x=\frac{\sin ^{-1}\left(\frac{1}{3}\right)}{\pi / 4}
\end{aligned}\left\{\begin{aligned}
\frac{4}{\pi}(\pi / 4 x & =10 \\
x & =\frac{4}{\pi} \cdot \sin ^{-1}(\\
x & =0.4327
\end{aligned}\right.
$$

Genera solution:

$$
x \doteq 0.4327
$$

Q2onswe:

$$
\begin{aligned}
& \frac{\pi}{4}=\pi-\theta_{R} \\
& \frac{\pi / 4}{\pi / 4}=\frac{\pi-\sin ^{-1}\left(\frac{1}{3}\right)}{\pi / 4}
\end{aligned}
$$

$$
\begin{aligned}
& x=0.4327+(\text { pernod })(n) \\
& x=0.4327+8 n, n \in I \\
& x=35673+8 n, n \in I
\end{aligned}
$$

$$
x=\frac{\pi-\sin ^{-1}(1 / 3)}{\pi / 4}=3.5673
$$

$$
y=\sin (\pi / 4 x)
$$

What is the pernod?

$$
\begin{aligned}
\frac{2 \pi}{b} & =\frac{2 \pi}{\pi / 4} \\
& =\frac{2 \pi}{1} \cdot \frac{4}{\pi}=\frac{8 \pi}{\pi}=8
\end{aligned}
$$

Example of an application question

The depth of water, h meters, at a certain port, at time hours, , given by this equation, where
$t=0$ represents midnight:

$$
h(t)=1.4 \sin \left(\frac{2 \pi}{12.2}(t-0.8)\right)+2.7
$$

How deep will the water be at 2:00 AM? At 4:00 PM?
substitute $t=2$

$$
h(2)=1.4 \sin \left(\frac{2 \pi}{12.2}(2-0.8)\right)+2.7
$$

$$
h(2)=3.5 \mathrm{~m}
$$

substitute $t=16, \quad h(16)=4.1 \mathrm{~m}$

WB - Creating a Sinusoidal Graph and Equation

Example

Suppose the pictured Ferris wheel hs diameter 40 meters, and the height of the seat where you first get on is 2 meter above therms. This wheel takes 2 minutes to rotate and travels at a constant speed.

- Minimum height? 2 m
- Maximum height? 42 m
- Center line height? 22 m
- Period length in seconds? 120 second s

a) Sketch a complete period of the graph, showing the height of a passenger above the ground as a function of time, in seconds. Give the coordinates of 5 key points.

t	h
0	2
30	22
60	42
90	22
120	2

b) Create a sinusoidal equation for this graph.

$$
\begin{aligned}
b & =\frac{\text { resides prod }}{8 \operatorname{mph}^{\prime} \text { prod }} \\
& =\frac{2 \pi}{120}
\end{aligned} \quad \quad \text { Lithe sine or cosine is fine) } \quad h=-20 \cos \left(\frac{2 \pi}{120} t\right)+22
$$

c) How high above the ground is a passenger 12 seconds after getting on, correct to one decimal place?

$$
\begin{aligned}
& h=-20 \cos \left(\frac{2 \pi}{120}(12)\right)+22 \quad\binom{\text { radian }}{\text { mode }} \\
& h=5.8 \mathrm{~m}
\end{aligned}
$$

d) During the first rotation of the Ferris wheel, what is the first time that the passenger reaches a height of 30 meters above the ground? Sole Solve alsebraitudy

$$
{\underset{-22}{ }}_{30}=-20 \cos \left(\frac{2 \pi}{120} t\right)+22
$$

George Washington Gale Ferris Jr.
 and the Ferris wheel concept

$$
\frac{8}{-20}=\frac{-20}{-20} \cos \left(\frac{2 \pi t}{120}\right)
$$

$$
\cos \left(\frac{2 \pi t}{120}\right)=\frac{8}{-20}=\frac{2}{-5}
$$

$$
\cos \left(\frac{2 \pi t}{120}\right)=\frac{2}{-s}
$$

$$
\begin{aligned}
\theta_{R} & =\cos ^{-1}\left(+\frac{2}{5}\right) \\
& =1.15927 \ldots
\end{aligned}
$$

$$
\begin{aligned}
Q_{2} \text { answer } & =\pi-1.15922 \cdots \\
& =1.982313173 \\
& \left.=\frac{1.982313173}{\frac{2 \pi t}{120}} \frac{\left(\frac{2 \pi}{120}\right)}{120}\right) \\
t & =37.9 \text { seconds }
\end{aligned}
$$

Coming Up

- No class on Monday, May 22 (Victoria Day)
- Chapter 5 Hand-in assignment - omit question \#9. Due Tuesday, May 23
- Test 3 on Tuesday, May 23 (on 4.2-5.4, omit 5.3 and 6.1). It includes a NO calculator section
- Know how to use the unit circle to get exact values
- Given a sinusoidal equation, be able to sketch it without using technology
- Given a sinusoidal graph, be able to figure out its equation without using technology
- Know how to find period, phase shift, amplitude, vertical displacement, spacing between key points, coordinates of key points.
- Know how to algebraically solve an equation similar to the example in the notes, page 36. (Or, like \#12b in the hand-in assignment)
- Understand the METHOD for graphically solving trigonometric equations
- Be able to create a circular motion equation and solve it. (similar to TB p 279, \#19)

