Class_10 Oct 11 Trig Equations and Graphs
Thursday, October 6, 2022

Tonight's Class

- Chapter 4 Test - next class, Thursday, Oct 13
- 4.4 More Trig Equation Solving
- 5.1 Sine and Cosine Graphs

Solve these two trigonometric equations. If exact answers are possible, give those. Otherwise, round values correct to 2 decimal places.

For each equation answer:

- In which quadrants will the answers be?

What is the size of the reference angle?
What are the solutions?
. $8 \sin \theta-4=0,0 \leq \theta<2 \pi$
2. $5 \tan \theta-1=0,0^{\circ} \leq \theta<360$
$8 \sin \theta=4$

$$
\sin \theta=\frac{4}{8}
$$

$$
\frac{5}{5} \tan \theta=\frac{1}{5}
$$

$$
\tan \theta=\frac{1}{5}
$$

$$
\sin \theta=\frac{1}{2}
$$

$$
\begin{aligned}
Q_{1} & =\pi / 6 \\
Q_{2} & =\pi-\pi / 6 \\
& =5 \pi / 6
\end{aligned}
$$

$$
\theta_{R}=\pi / 6 \quad\left[\begin{array}{l}
Q_{2}=\pi-\pi / 6 \\
=5 \pi / 6
\end{array}\right]
$$

$$
=11.31^{\circ}
$$

$\begin{aligned} Q 3 & =180^{\circ}+\theta_{r} \\ & =19 \angle 31^{\circ}\end{aligned}$

Which of these trigonometric equations have NO SOLUTION?

Isolate - Decide - Get Reference Angle - Solve

1) Isolate the trigonometric term. If it uses cot, sec, or csc, take the reciprocal of both sides of the equation to get a simpler-to-solve version of the equation.
2) Decide whether the equation can be solved using

- special angles on the unit circle. Look for: $0, \pm 1, \pm \frac{1}{2}, \pm \frac{\sqrt{2}}{2}, \pm \frac{\sqrt{3}}{2}$
- the $\sin ^{-1}, \cos ^{-1}$ or $\tan ^{-1}$ button on the calculator
- OR, cannot be solved

3) Determine in which quadrants answers will be found.
4) Find the reference angle and use it to find all the solutions in the given domain. Use the same units (either degrees or radians) as shown in the question's domain.
5) isolated $/$
6) calc., Q3 and Q_{4}

If we calculate $\sin ^{-1}(-0.8)$, the calculator
3) $\theta_{R}=\sin ^{-1}(+0.8)$ gives us a negative answer. We don't wat
this, because the domain asks for only this, because the
positive answers.
positive answers.
To avoid this problem, give the calculator
the trigonometric ratio as a positive quantity.
$\begin{aligned} R & =51^{\circ} \ldots \text { ref ans } \varphi \\ & =53.80\end{aligned}$
This guarantees the calculator will give us

Examples Solve algebraically. If possible, give exact answers. Otherwise, give answers correct to one decimal pace

1) isolate b) $5 \cos \theta-2=2 \cos \theta-4$, for $0 \leq \theta<720$
2) Solutions
$0 \leq \theta<720^{\circ}$
the reference angle, which will be positive.

$$
Q_{3}=180^{\circ}+\theta_{R} \quad Q_{4}=360^{\circ}-\theta_{R}
$$

1) isolate $-2 \cos \theta \quad-2 \cos \theta$

$$
\frac{3 \cos \theta}{3}=\frac{-2}{3}
$$

$$
\cos \theta=-\frac{2}{3}
$$

2) decide calculator, and $Q 2$ and $Q 3$
3) ref angle

$$
\begin{aligned}
\theta_{R} & =\cos ^{-1}\left(+\frac{2}{3}\right) \\
& =48.2^{\circ}
\end{aligned}
$$

General Solution

How many solutions a trigonometric equation has depends on the domain specified in the question. When the domain is all real numbers, there are infinitely many solutions. This is called the general solution.

Example Solve algebraically. If possible, give exact answers. Otherwise, give answers correct to one decimal place.
a) $3 \cos \theta-1=0$, general solution in degree measure.

```
                                    First, get the answers between
\(0^{\circ} \leqslant 0^{\circ}<360^{\circ}\)
```

1) isolate.
$\frac{3 \cos \theta}{3}=\frac{1}{3}$
2) ref- angle
$\cos \theta=\frac{1}{3}$
$\theta_{R}=\cos ^{-1}\left(\frac{1}{3}\right)$

3) decide calculator, $Q 1$
4) answers:
$Q_{1}=70.5^{\circ}$

$$
Q_{4}=360^{\circ}-\theta_{R}=289.5^{\circ}
$$

1) isolate
$\cot \theta=-5$
2) calculator, Q2,Q4
$\frac{1}{\tan \theta}=\frac{-5}{1}$
3) $\theta_{R}=\tan ^{-1}\left(+\frac{1}{5}\right)$
$\tan \theta=-\frac{1}{5}$
$=0.1973 \ldots$
$Q_{2}=\pi-\theta_{R}$ $\doteq 2-9$

$$
\doteq 0.20 \quad \text { (radian) }
$$

$$
\begin{aligned}
Q_{4} & =2 \pi-\theta_{R} \\
& \doteq 6.1
\end{aligned}
$$

4) solve

Here's how to write the general solution:

- list each answer θ, found in one full rotation, separately
- to each answer add on the appropriate amount, either

$$
+2 \pi n, n \in I \quad \text { or }+360 n, n \in I
$$

b) $\cot \theta+5=0$, general solution in radian measure. $Q_{-5}=360^{\circ}-\theta_{R}=289.5^{\circ}$

Example
\pm Suppose that for a certain equation, we are all told its solutions for $0^{\circ} \leq \theta<360^{\circ}$ are $\theta=20^{\circ}$ and $\theta=160^{\circ}$. What is the general solution?

$$
\begin{array}{ll}
20^{\circ}+360^{\circ} n, & n \in I \\
160^{\circ}+360^{\circ} n, & n \in I
\end{array}
$$

Solving Second-Degree Trigonometric Equations
When we solve equations with an exponent we usually start by factoring.
For example, solve:

$$
2 x^{2}-1=x
$$

$$
2 x^{2}-2 x+1 x-1=0
$$

$$
2 x(x-1)+1(x-1)=0
$$

$$
(x-1)(2 x+1)=0
$$

Example

$$
2 \tan ^{2} \theta-1=\tan \theta, \text { for } 0 \leq \theta<360^{\circ}
$$

$$
2 \tan ^{2} \theta-\tan \theta-1=0
$$

$$
2 x^{2}-x-1=0
$$

$$
2 \tan \theta+1=0
$$

$$
\tan \theta-1=0
$$

isolate

$$
\begin{aligned}
\frac{2 \tan \theta}{2} & =-\frac{1}{2} \\
\tan \theta & =-\frac{1}{2}
\end{aligned}
$$

decide calculator, $\quad Q 2, Q 4$

$$
\begin{aligned}
\theta_{R} & =\tan ^{-1}\left(+\frac{1}{2}\right) \\
& =26.6^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
Q_{1} & =45^{\circ} \\
Q_{3} & =180^{\circ}+\theta_{k} \\
& =225^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
Q_{2} & =180^{\circ}-\theta_{k} \\
& =153.4^{\circ} \\
Q_{4} & =360^{\circ}-\theta_{k} \\
& =333.4^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Example } \\
\text { Solve algebraically. If possible, give exact answers. Otherwise, give answers correct to }
\end{array} \\
& \begin{array}{l}
\text { Solve algebraically } \\
\text { one decimal place. }
\end{array} \\
& x^{2}-9=0 \\
& 2 \cos ^{2} \theta-1=0, \text { for } 0 \leq \theta<2 \pi \\
& \frac{2}{2} \cos ^{2} \theta=\frac{1}{2} \\
& \sqrt{\cos ^{2} \theta} \pm \frac{ \pm}{\frac{1}{2}} \\
& \cos \theta= \pm \sqrt{\frac{1}{2}} \\
& \cos \theta=-\sqrt{\frac{1}{2}} \\
& \cos \theta=\sqrt{\frac{1}{2}} \\
& \cos \theta=\frac{\sqrt{1}}{\sqrt{2}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{align*}
& \cos \theta=\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& \cos \theta=\frac{\sqrt{2}}{2} \\
& \begin{array}{l}
\theta_{R}=\pi / 4 \\
Q_{1}=\pi / 4
\end{array} \\
& \begin{array}{l}
\theta_{R}=\pi / 4 \\
\left.Q_{1}=\pi / 4\right)
\end{array} \\
& \begin{aligned}
Q_{4} & =\frac{42 \pi-\pi / 4}{4} \\
& =8 \frac{8}{4}-\pi / 4
\end{aligned} \\
& \begin{aligned}
Q_{4} & =\frac{42 \pi-\pi / 4}{4} \\
& =8 \frac{8}{4}-\pi / 4
\end{aligned} \\
& \cos \theta=-\frac{\sqrt{2}}{2} \\
& \sum_{Q_{1}, Q_{4}} \\
& \begin{aligned}
Q_{3} & =\pi+\pi / 4 \\
& =5 \pi / 4
\end{aligned} \tag{4}
\end{align*}
$$

(4.4) TB p 211: 2-4, 5ace, 7 all

Trigonometry Practice \#4

Individual whiteboards - what is the measure of each standard-
position angle below?
1.
$5 \frac{\pi}{3}$
2.

$\frac{7 \pi}{4}$

Reviewing the Unit Circle - fill in the tables below, without using your calculator

x-coordinct	
θ $\cos \theta$ 0 1 $\frac{\pi}{6}$ $\sqrt{3} / 2$ $\frac{2 \pi}{6}=\frac{\pi}{3}$ $1 / 2$ $\frac{3 \pi}{6}=\frac{\pi}{2}$ 0 $\frac{4 \pi}{6}=\frac{2 \pi}{3}$ $-1 / 2$ $\frac{5 \pi}{6}$ $-\sqrt{3} / 2$ $\frac{6 \pi}{6}=\pi$ -1 $\frac{7 \pi}{6}$ $-\sqrt{3} / 2$ $\frac{8 \pi}{6}=\frac{4 \pi}{3}$ $-1 / 2$ $\frac{9 \pi}{6}=\frac{3 \pi}{2}$ 0 $\frac{10 \pi}{6}=\frac{5 \pi}{3}$ $1 / 2$ $\frac{11 \pi}{6}$ $\sqrt{3 / 2}$ $\frac{12 \pi}{6}=2 \pi$ 1	

θ	$\sin \theta$
0	0
$\frac{\pi}{6}$	$1 / 2$
$\frac{2 \pi}{6}=\frac{\pi}{3}$	$\sqrt{3} / 2$
$\frac{3 \pi}{6}=\frac{\pi}{2}$	1
$\frac{4 \pi}{6}=\frac{2 \pi}{3}$	$\sqrt{3} / 2$
$\frac{5 \pi}{6}$	$1 / 2$
$\frac{6 \pi}{6}=\pi$	0
$\frac{\sqrt{3}}{2}$,	
$\frac{7 \pi}{6}$	$-1 / 2$
$\frac{8 \pi}{6}=\frac{4 \pi}{3}$	$-\sqrt{3} / 2$
$\frac{9 \pi}{6}=\frac{3 \pi}{2}$	-1
$\frac{10 \pi}{6}=\frac{5 \pi}{3}$	$-\sqrt{3}$,
$\frac{11 \pi}{6}$	$-1 / 2$
$\frac{12 \pi}{6}=2 \pi$	0

Textbook, page 220

We'll start by looking the BASIC graphs of the functions sine and cosine, and then we'll do transformations on them.

Chapter 5: Trigonometric Functions and Graphs

5.1 Graphing Sine and Cosine Functions

Let's track what happens to $P(\theta)$ as θ, a standard-position angle, gets larger

			$y=\cos \theta$
	Q1	As θ increases from 0 to $\frac{\pi}{2}$	cosine values (x-values)
			go from 1 down to 0
	Q2	As θ increases from $\frac{\pi}{2}$ to π	cosine values (x-values)
			0 dom to -1
()x	Q3	As θ increases from π to $\frac{3 \pi}{2}$	cosine values (x-values)
			-1 up to 0
	Q4	As θ increases from $\frac{3 \pi}{2}$ to 2π	cosine values (x-values)
			0 wn to 1

$y=\cos \theta \quad$ (also often written as $y=\cos x$)

θ	$\cos \theta$
0	1
$\frac{\pi}{6}$	$\sqrt{3} / 2$
$\frac{2 \pi}{6}=\frac{\pi}{3}$	$1 / 2$
$\frac{3 \pi}{6}=\frac{\pi}{2}$	0
$\frac{4 \pi}{6}=\frac{2 \pi}{3}$	$-1 / 2$
$\frac{5 \pi}{6}$	$-\sqrt{3} / 2$
$\frac{6 \pi}{6}=\pi$	-1
$\frac{9 \pi}{6}=\frac{3 \pi}{2}$	0
$\frac{12 \pi}{6}=2 \pi$	1

Maximum: $1 \quad$ Minimum: -1
Range: $\{y \mid-1 \leq y \leq 1\}$

Amplitude: \mid
$\left\{\begin{array}{ccc}\text { Domain: } & x \text {-intercepts } & \text { Period: } \\ & \frac{\pi}{2}, \frac{3 \pi}{2}, \ldots . & \text { Center line equation: } \\ & 2 \pi & y=0\end{array}\right.$

		$y=\sin \theta$
Q1	As θ increases from 0 to $\frac{\pi}{2}$	sine values (y-values)
		Oup to (
Q2	As θ increases from $\frac{\pi}{2}$ to π	sine values (y-values)
		1 down to 0
Q3	As θ increases from π to $\frac{3 \pi}{2}$	sine values (y-values)
		0 down to -1
Q4	As θ increases from $\frac{3 \pi}{2}$ to 2π	sine values (y-values)
		$-1 \text { up to } 0$

$$
y=\sin \theta \quad(\text { also often written as } y=\sin x)
$$

$$
\begin{array}{ll}
\text { Maximum: } \quad & \text { Minimum: }-1 \\
\text { Domain: } & x \text {-intercepts } \\
\theta \in \mathbb{R}\} \quad & 0, \pi, 2 \pi, \cdots \\
& X=\pi n, n \in I
\end{array}
$$

$$
y=0
$$

horizontal
lens th of one cycle

Both of these graphs are periodic. (repeat, over \& over) Both of these graphs are sinusoidal. (wavelike shape)
http://www.malinc.se/math/trigonometry/unitcircleen.php
$\underline{\text { http://phet.colorado.edu/sims/html/trig-tour/latest/trig-tour en.html }}$

"Basic Functions" - KNOW the 5 key points for each graph!

Be sure to label the x - and y-axes
(Note - these graphs show only one period of the sine and cosine graphs. This pattern repeats over and over.)

amplitude $=3$

$$
y=\frac{1}{2} \sin \theta
$$

θ	$\sin \theta$		θ
0	0	$1 / 2 \sin \theta$	
$\pi / 2$	1		$\pi / 2$
π	0		0
$3 \pi / 2$	-1		
2π	0		3π

$$
(x, y) \rightarrow\left(x, \frac{1}{2} y\right)
$$

What is the amplitude for each?			
1.	$y=\sin x$	\longrightarrow	1
2.	$y=8 \sin \theta$	\rightarrow	8
3.	$y=-4 \sin \theta$	\rightarrow	4
4.	$y=\sin (2 \theta)$	\rightarrow	1
5.	$y=\frac{1}{5} \sin x$	\rightarrow	$\frac{1}{5}$

Amplitude
is the vertical distance from the center line of a trigonometric graph to its maximum or minimum. The untransformed graphs of $y=\sin x$ and $y=\cos x$ have amplitude 1 .

For $y=a \cos x$ or $y=a \sin x$

- vertical stretch, factor a
- amplitude $=|a|$
- if $a<0$, graph is reflected across x-axis
- amplitude $=\frac{|\max -\min |}{2}$

Amplitude for graph shown at left? 3

Equation of the graph?

What is the range for each?

$$
y=\cos \theta
$$

$$
-1 \leq y \leq 1
$$

$$
y=5 \cos x
$$

$$
-5 \leq y \leq 5
$$

$$
y=-2 \cos \theta
$$

$$
-2 \leq y \leq 2
$$

Coming up - Thursday, Oct 13

- Chapter 4 Hand-in Due
- Chapter 4 Test - remember, there's a no-calculator portion
- KNOW your unit circle and how to use it)

More Practice

- (4.3) TB p 202: 10bc, 11acd
- (4.4) p 211: 2-4, Face, 7 all
- (5.1) p 233:6-8, Mac, 10ab, 11, 14

