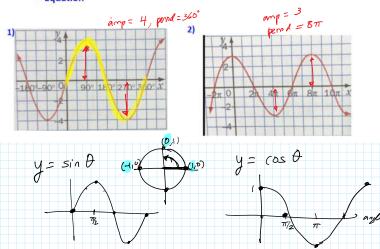
Class_11 Oct 13 More Graphs and Applications

Tuesday, October 11, 2022 5:40 PM

Tonight's Class:

- Warm-up
- Chapter 4 Test
- 5.2 Sinusoidal Graphs


Please:

- 1. Make sure your name is on the Chapter 4 Hand-in worksheet and hand it in.
- 2. Put away your calculator and all other materials.
- 3. On your test, write clearly and show all necessary steps. When you are finished the non-calculator portion, raise your hand and I'll bring you the rest of the test. You can use your calculator for the second part.
- 4. While other people are still finishing, respect them by being quiet. You can leave the classroom if you wish, but be back in time for the rest of class.

Individual WB - warm-up

For each graph, state its

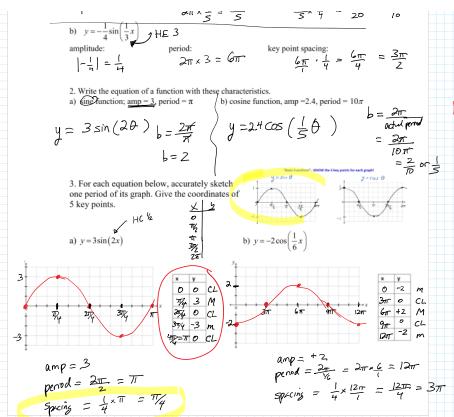
- Amplitude
- Period
- Equation

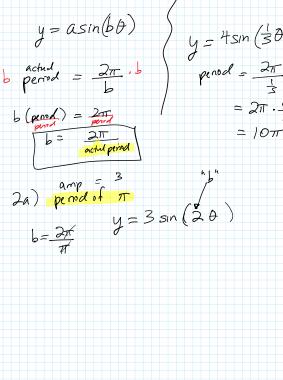
Pre-Calc 12 – Unit 2 Page 28

- When sketching a period of a trigonometric function graph, we

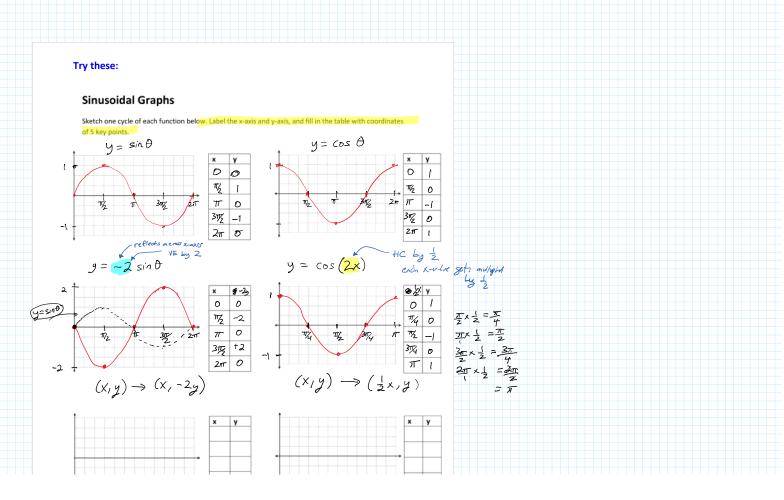
 multiply the period length by ¼, to determine the spacing between key points
 - plot key points: maximum, minimum, and center-line
 - connect key points smoothly, getting a sinusoidal shape

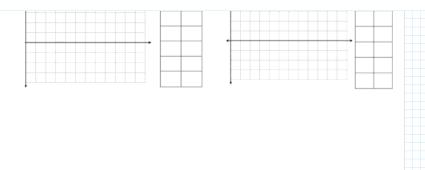
Base graphs - amplitude = 1 penod = 2TT


) HC 3 1a) $y = -3\sin(5x)$ amplitude: period: 1-31 = 3


key point spacing:

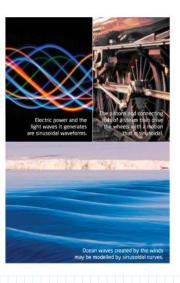
 $-\frac{1}{4}\sin$ b) y = -1 HE 3 amplitude: period:


7 - Com


key point spacing: 6m = 3m

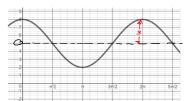
(5.1) p 233:6-8, 9ac, 10ab, 11, 14

(5.1) p 233: 6-8, 9ac, 10ab, 11, 14


Textbook, page 238

Transformations of **Sinusoidal Functions**

- graphing and transforming sinusoidal functions
 identifying the domain, range, phase shift, period, amplitude, and vertical displacement of sinusoidal functions
- developing equations of sinusoidal functions, expressed in radian and degree measure, from graphs and descriptions
- solving problems graphically that can be modelled using sinusoidal functions
 recognizing that more than one equation can be used to represent the graph of a sinusoidal function


The motion of a body attached to a suspended spring, the motion of the plucked string of a musical instrument, and the pendulum of a clock produce oscillatory motion that you can model with sinusoidal functions. To use the functions $y = \sin x$ and $y = \cos x$ in applied situations, such as these and the ones in the images shown, you need to be able to transform the functions.

5.2 More Transformations of Sinusoidal Functions

Vertical Displacement

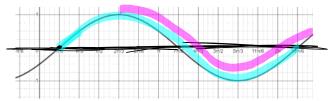
is the amount of vertical translation (up/down) a sinusoidal graph moves

For $y = a\cos x + d$ or $y = a\sin x + d$

- vertical displacement, d units
- center line is located at y = d
- · when we have no equation, we can figure out the vertical displacement from the graph:

 $vertical\ disp = \frac{\max + \min}{}$

Vertical displacement for this graph?

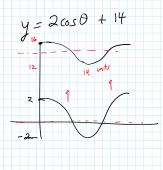

$$\frac{8+2}{2} = \frac{10}{2} = 5$$

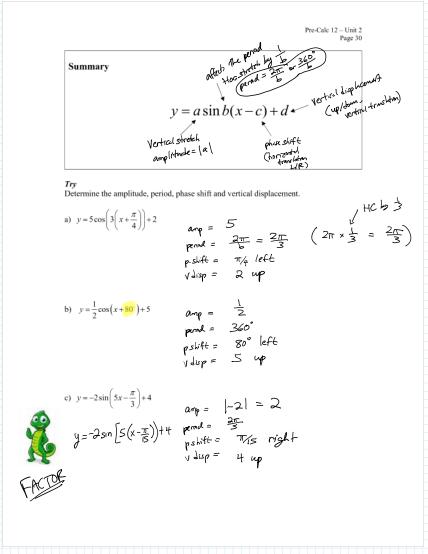
Equation of this graph?

$$y = 3\cos(x) + 5$$

Phase Shift

ntal translation (left/right) a sinusoidal graph moves




For $y = \cos(x - c)$ or $y = \sin(x - c)$

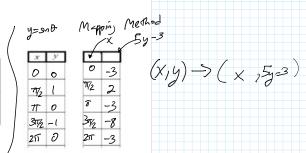
- phase shift, c units
- when we have no equation, we use the graph to find the phase shift.
 Choose a period of either sine or cosine that begins near the y-axis. Identify how much it has moved left/right compared to the basic (untransformed) graph.

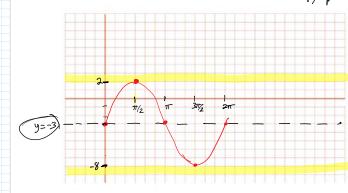
For the graph above, find its equation in the form: $y = \sin(x-c)$

For the graph above, find its equation in the form: $y = \cos(x-c)$

In-class Worksheet: Graphing Sinusoidal Functions (front page)

Graphing Sinusoidal Functions – two methods


$$y = 5\sin\theta - 3$$


basic shape	vertical displacement	amplitude 5
equation of center line $y = -3$	maximum -3+5 = 2	minimum -3-5 = -8

- 1) plot center line
- 2) label Max and min on y-AXIS
 3) label X-AXIS
 4) make a table of tay points

- 5) plot & coment the key points

- 1) create mapping
- 2) creek BASE talk and transformed table
- 3) Idel X and y-axiv 4) plot + connect the key points

2 M СL

More Practice

- In-class worksheet: look at the back of the worksheet
- Worksheet: Transformed to Try try the two graphs on the first page of this one
- (5.2) TB p 250: 1-7, 10, 14, 15ac, 16ac