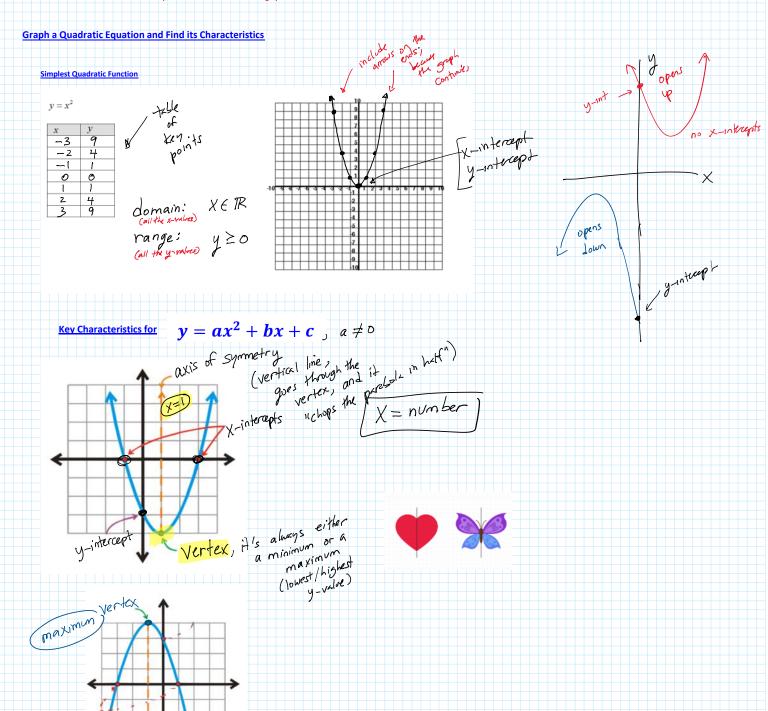

Tonight's Class:


- Questions?
- Chapter 3 Test
- Working through sections 4.1, 4.3, 4.4
 - Properties of a Quadratic Function
 - Transforming Graphs of Quadratic Functions
- · Work on practice questions from worktext

$$\begin{cases} 200, & *18L \\ 2 \times 2 + \frac{9}{8} \times 1 + \frac{1}{4} \\ 3 \times 2 + \frac{9}{8} \times 1 + \frac{1}{4} \\ 4 \times 2 + 9 \times 1 + 2 \\ 6 \times 1 + \frac{1}{8} \\ 7 \times 1 + \frac{1}{8} \\$$

4.1 Properties of a Quadratic Function

Focus: determine the characteristics of a quadratic function and sketch its graph

Soon we'll learn how to change the form of the function equation (Section 4.5)

 $y = ax^2 + bx + c$

 $y = a(x - h)^2 + k$

General Form

Vertex Form

Vertex form is better for discovering key characteristics of the graph.

#4 Where is the y_in tercept? (look at c-value, the constant)

#5 max/min, look at a-value

Try page 277:4-6

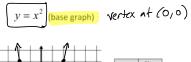
#5c answer should say minimum

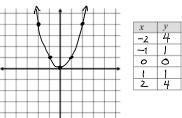
4.2 - Omitting this section (requires graphing calculators)

4.3 Transforming a Quadratic Function's Graph

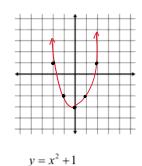
What are transformations?

changes made to the equation, that result in specific changes to its graph

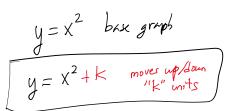

1) translations (moving L/R, U/D)

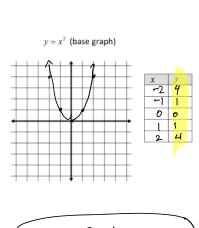

2) vertical stretches

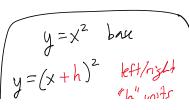
- 3) reflection

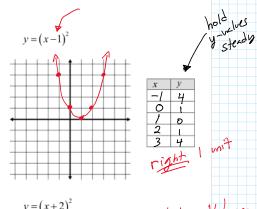

Translations (monny the shape)

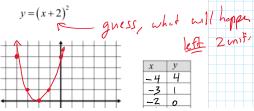
Hand-out with grids

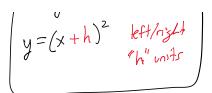


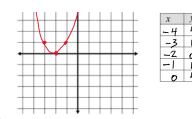

v	12	1		
-2	1	(-2)	۷ -	3
-1	-2	(-1)	2 -	3
0	-3	(0)	² -,	3
1	-2	(1)2	ŀ	3
2	<u> </u>	(2)2	-	5
,sh	t has	Peren	7	
	to.	grav		

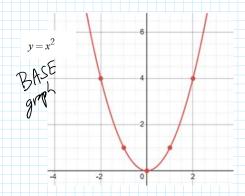


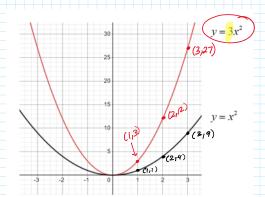

		1	•	Î.	
\Box					
+	+	\mathbb{H}	+/	\vdash	Н
+	+	-	\vdash	-	Н
\perp					
+	+			\vdash	
++			+	-	

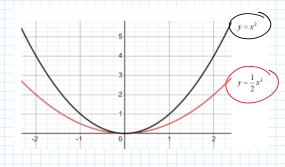

X	y	
-2	5	(-2)2+1
-1	2	$(-1)^2 + 1$
O	- 1	$(0)^{2}+1$
t	2	(1)2+1
2	5	$(2)^2 + 1$


Function	Vertex	Transformation
$y = x^2$	(0,0)	
$y = x^2 - 3$	(0,-3)	down 3
$y = x^2 + 1$	(0,1)	up 1







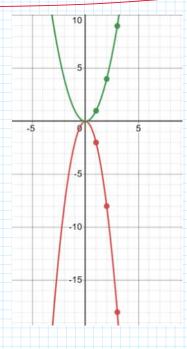

Function	Vertex	Transformation
$y = x^2$	(0,0)	
$y = (x-1)^2$	(1,0)	right 1
$y = (x+2)^2$	(-2,0)	left 2

Stretches (vertical expansions and compressions)

When there's a number in front of the x^2 term, the graph gets vertically expanded or compressed. The graph's shape is changed (not its position)

New points
are?

(0,0)
$$\rightarrow$$
 (0,0)


(1,1) \rightarrow (1, $\frac{1}{2}$)

(2,4) \rightarrow (2,2)

y-value set by 2

Reflections

If "a" is negative, graph reflects and opens downward.

For next class

- Work on these worktext questions for 4.1, 4.3

 - 4.1, #4-6, 84.3, #1, 2ab, 3, 4