Plan For Todays

1. Question about anything from last class? 6.1
\diamond 6.1 Review
2. Start Chapter 6: Trig Identities \& Solving Equations

* 6.1: Reciprocal, Quotient \& Pythagorean Identities
- (Simplifying \& Proving)
* 6.2: Sum, Difference \& Double-Angle Identities
* 6.3s Proving Identities
* 6.4: Solve Trig Equations with Identities

3. Work on practice questions from Textbook

Page 306:
\#1ade, 2ac, 4ace, 5, 8ce, 10, 11, 16, 20acd
Page 314:
\#2, 3ac, 5, 7, 10c, 11a, 12a, 15, 18

Plan Going Forwards

IDENTTTY THEFT

1. Finish working through textbook question from 6.1-6.3 and continue working on Chapter 6 Assignment.
2. You will practice 6.3 proofs on Thursday (tomorrow) and possibly start 6.4 if time. You will finish Ch6 with 6.4 on Monday after Test 4.

TEST 4 ON MONDAR. MAY 2OTH (ON G.1—6.3)
CHAPTER G ASSIGNMENT DUE TUESDAY. MAY 3OTH OR WEDNESDAY. MAY 31ST

Please let us know if you have any questions or concerns about your progress in this course. The notes from today will be posted at egolfmath.weebly.com after class.
Anurita Dhiman = adhiman@sd35.bc.ca
Susana Egolf = segolf@sd35.bc.ca

Your Turn \quad p. 293
a) Determine the non-permissible va $\cot x=\frac{\cos x}{\sin x}$.
b) Verify that $\underbrace{x=45^{\circ}}$ and $x=\frac{\pi}{6}$, are

$$
1=1 \checkmark \text { verified }
$$

Try doing the rest of this page!

More Practice
Simplify each expression below. Look for substitutions you can make, using basic

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

identities. Your final answer should contain no more than one trigonometric function.

1. $\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\left(\frac{\cos \theta}{\sin \theta}\right)^{2}$
$=(\cot \theta)^{2}$

$$
=\frac{\sin \theta}{\cos \theta} \cdot \frac{1}{\cos \theta} \cdot \frac{\cos \theta}{1}
$$

$$
=\cot ^{2} \theta
$$

2. $\tan \theta \sec \theta \cos \theta$
3. $1-\cos ^{2} \theta=\sin ^{2} \theta$

$$
=\frac{\sin \theta}{\cos \theta}=\tan \theta
$$

$$
\begin{aligned}
& \left(\sin ^{2} \theta+\cos ^{2} \theta\right)-\cos ^{2} \theta \\
& =\sin ^{2} \theta
\end{aligned}
$$

4. $\cos ^{2} \theta-1$

$$
\begin{aligned}
& \sin ^{2} \theta+\cos _{-1}^{2} \theta=1 \quad=-\sin ^{2} \theta \stackrel{5 \cdot 1+\tan ^{2} \theta}{=}=\operatorname{se} \\
& \sin ^{2} \theta+\cos ^{2} \theta-1=0 \\
& L_{-\sin ^{2} \theta}=-\sin ^{2} \theta \\
& \cos ^{2} \theta-1=-\sin ^{2} \theta
\end{aligned}
$$

$$
\text { 9. } \frac{\sin ^{2} \theta+\sin \theta}{\cos \theta+\cos \theta \sin \theta} \leftarrow \text { Common factory }(G C F)=\sin \theta \theta
$$

$$
\sec 2 x \neq \sec ^{2} x
$$

$$
=\frac{\sin \theta}{\cos \theta}
$$

$$
=\tan \theta
$$

$$
\begin{aligned}
& \text { (2) } \sec ^{2} \theta
\end{aligned}
$$

6.0 Algebra Skills Used in Chapter 6

Multiplying Trigonometric Expressions

1. $\sin x(2 \sin x-1)$
2. $(\cos x+2)(\cos x-7)$

Factoring Trigonometric Expressions

Greatest Common Factor

1. $\sin ^{2} x-3 \sin x \quad \sin x()$
2. $5 \tan ^{2} x+15 \tan x \quad 5 \tan x(\quad)$

Difference of Perfect Squares

1. $\sin ^{2} x-\sqrt{1} \quad(\sin x+1)(\sin x-1)$
2. $1-\tan ^{2} x$ $(1+\tan x)(1-\tan x)$

Trinomials	
1. $2 \cos ^{2} x+\cos x-1$	$A C=-2$
A	

$(3 \sin x-1)(\sin x+1)$

Adding/Subtracting Trigonometric Terms

We can only add like terms

- Terms must contain the same angle
- Terms must use the same trigonometric function

Which of these terms can be combined?

$4 \sin x+3 \cos x$	\times
$3 \sin x+4 \sin x=7 \sin x$	$2 \sin ^{2} x+4 \sin 2 x \times$

Errors to Avoid

Omitting the angle

$\cos +4 \cos$
These terms contain no angle - they don't mean anything!

Incorrect cancelling

You can never "cancel" the angle, or any part of the angle, in a trigonometric expression.

$$
\begin{array}{ll}
\frac{\cos x}{x} \text { wrong } & \frac{\tan 2 x}{2} \text { wrong } \\
\frac{\cos x}{\cos x}=1 \checkmark & \frac{x \tan x}{x}=\tan x
\end{array}
$$

More incorrect cancelling

You can NEVER cancel just a portion of a factor.
$\frac{\cos x+1}{\cos x}=$ wrong
You CANNOT cancel the " $\cos x$ " on the
top
with the " $\cos x$ " on the bottom!
$\frac{(\cos x+1)(\cos x-1)}{(\cos x+1)}=\cos x-1 \quad$ You CAN cancel the " $\cos x+1$ " factors

To CORRECTLY simplify a rational expression, factor it completely.
If the numerator and the denominator contain the same factor, you can reduce.
For example: $\quad \frac{\sin ^{2} x+8 \sin x+12}{\sin ^{2} x+\sin x-30} \rightarrow \frac{(\sin x+6)(\sin x+2)}{(\sin x+6)(\sin x-5)}=\frac{\sin x+2}{\sin x-5}$ pros
Notice that we cannot reduce $\frac{\sin x+2}{\sin x-5}$ by canceling the $\sin x$'s, because $\sin x$ is NOT
a factor of the numerator and the denominator. $\quad \frac{\sin x+2}{\sin x-5} \neq \frac{2}{-5}$

Distributing when you can't:

For example, consider what happens if $x=15^{\circ}$ and $y=28^{\circ}$

Degree Made

$$
\begin{aligned}
& \cos \left(15^{\circ}+28^{\circ}\right)=0.73 \\
& \cos \left(15^{\circ}\right)+\cos \left(28^{\circ}\right)=1.85
\end{aligned}
$$

This shows us that $\quad \cos (x+y) \neq \cos x+\cos y$

$$
\begin{aligned}
& \frac{\tan x-1}{\tan x} \times \frac{1}{\tan x-1} \\
& =\frac{1}{\tan x} \\
& =\cot x
\end{aligned}
$$

Date: \qquad

Trig Identities

Across

1. $1-\sin ^{\wedge} 2(x)=$
2. $2 \sin (\mathrm{u}) \cos (\mathrm{u})=$
3. $\cot ^{\wedge} 2(x)+1=$
4. $\cos ^{\wedge} 2(x)-\sin ^{\wedge} 2(x)=$
5. $\sin (x)=$
6. $\cos (u) \cos (x)+\sin (u) \sin (v)=$
7. $\sin (\mathrm{pi} / 2-\mathrm{x})=$
8. $\sec (-x)=$
9. $\cos (u) \cos (x)-\sin (u) \sin (v)=$
10. $\sin (-x)=$
11. $\sin (u) \cos (v)+\cos (u) \sin (v)=$

Word Bank

$1 / \sin (x)$	$1 / \cos (x)$	\cos / \sin	$1 / \csc (x)$	$1 / \sec (x)$	\sin / \cos	1
$\sec ^{\wedge} 2(x)$	$\csc ^{\wedge} 2$	$\cos (x)$	$\cot (x)$	$\csc (x)$	$-\sin (x)$	$-\csc (x)$
$\cos (x)$	$\sec (x)$	$-\tan (x)$	$\cot (x)$	$\cos (u+v)$	$\cos (u-v)$	$\sin (u+v)$
$\sin (u-v)$	$\sin 2(x)$	$\cos 2(x)$	$\cos 2(x)$	$\cos 2(x)$	$\tan 2(x)$	

6.2 Sum, Difference \& Addition Identities

https://www.explorelearning.com/index.cfm?method=cResource.dspView\&ResourceID=160

Addition Identities

$$
\begin{array}{ll}
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta & \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta & \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta
\end{array}
$$

$$
\begin{aligned}
& \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\
& \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}
\end{aligned}
$$

https://slideplayer.com/slide/12573563/

Example 2 - Proving a Cofunction Identity

Prove the cofunction identity $\cos \left(\frac{\pi}{2}-u\right)=\sin u$.

Solution:

By the Subtraction Formula for Cosine we have

$$
\begin{aligned}
\cos \left(\frac{\pi}{2}-u\right) & =\cos \frac{\pi}{2} \cos u+\sin \frac{\pi}{2} \sin u \\
& =0 \cdot \cos u+1 \cdot \sin u \\
& =\sin u
\end{aligned}
$$

25

EXAMPLE 5 Using the Sum Formula for Sine

Find the exact value of

$$
\sin 63^{\circ} \cos 27^{\circ}+\cos 63^{\circ} \sin 27^{\circ}
$$

without using a calculator.
Solution
This expression is the right side of the sum identity for $\sin (u+v)$, where $u=63^{\circ}$ and $v=27^{\circ}$.

$$
\begin{aligned}
\sin 63^{\circ} \cos 27^{\circ}+\cos 63^{\circ} \sin 27^{\circ} & =\sin \left(63^{\circ}+27^{\circ}\right) \\
& =\sin \left(90^{\circ}\right) \\
& =1
\end{aligned}
$$

Using a Sum-of-Two-Angles Formula
Find the exact value of $\sin \frac{7 \pi}{12}$.

SOLUTION

Since $\frac{\pi}{3}+\frac{\pi}{4}=\frac{4 \pi}{12}+\frac{3 \pi}{12}=\frac{7 \pi}{12}$, use the formula for $\sin (A+B)$

Verify this identity for: $a=\frac{\pi}{4}, \quad b=\frac{\pi}{2}$

$$
\sin (a+b)=\sin a \cos b+\cos a \sin b
$$

$$
\begin{array}{c|l}
\sin \left(\frac{\pi}{4}+\frac{\pi}{2}\right) & \sin \frac{\pi}{4} \cos \frac{\pi}{2}+\cos \frac{\pi}{4} \sin \frac{\pi}{2} \\
\sin \frac{3 \pi}{4} & \left(\frac{1}{\sqrt{2}}\right)(0)+\left(\frac{1}{\sqrt{2}}\right)(1)
\end{array}
$$

$$
\begin{array}{l|l}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}
$$

$$
\text { Left Side }=\text { Right Side }
$$

Example
VERIFYING AN IDENTITY USING SUM AND DIFFERENCE IDENTITIES

- Verify that the equation is an identity.

$$
\sin \left(\frac{\pi}{6}+\theta\right)+\cos \left(\frac{\pi}{3}+\theta\right)=\cos \theta
$$

$\sin \left(\frac{\pi}{6}+\theta\right)+\cos \left(\frac{\pi}{3}+\theta\right)$
$=\left(\sin \frac{\pi}{6} \cos \theta+\sin \theta \cos \frac{\pi}{6}\right)+\left(\cos \frac{\pi}{3} \cos \theta-\sin \frac{\pi}{3} \sin \theta\right)$
$=\left(\frac{1}{2} \cos \theta+\frac{\sqrt{3}}{2} \sin \theta\right)+\left(\frac{1}{2} \cos \theta-\frac{\sqrt{3}}{2} \sin \theta\right)$
$=\frac{1}{2} \cos \theta+\frac{1}{2} \cos \theta=\cos \theta$

EXAMPLE 1 Using the Difference Identity for Cosine

Find the exact value of $\cos \frac{\pi}{12}$ by using
$\frac{\pi}{12}=\frac{\pi}{3}-\frac{\pi}{4}$.

SOLUTION
Since $\frac{\pi}{3}+\frac{\pi}{4}=\frac{4 \pi}{12}+\frac{3 \pi}{12}=\frac{7 \pi}{12}$, use the formula for $\sin (A+B)$ where $A=\frac{\pi}{3}$ and $B=\frac{\pi}{4}$:
$\sin (A+B)=\sin A \cos B+\cos A \sin B$

$$
\begin{aligned}
& =\left(\sin \frac{\pi}{3}\right)\left(\cos \frac{\pi}{4}\right)+\left(\cos \frac{\pi}{3}\right)\left(\sin \frac{\pi}{4}\right) \\
& =\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right)+\left(\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right) \\
& =\frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{4} \\
& =\frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

6.3 Example Using Sine and Tangent Sum or Difference Formulas
(b) $\tan \frac{7 \pi}{12}=\tan \left(\frac{\pi}{3}+\frac{\pi}{4}\right)=\frac{\tan \frac{\pi}{3}+\tan \frac{\pi}{4}}{1-\tan \frac{\pi}{3} \tan \frac{\pi}{4}}$

$$
=\frac{\sqrt{3}+1}{1-\sqrt{3} \cdot 1}
$$

$$
=-2-\sqrt{3} \quad \text { Rationalize the denominator and simplify. }
$$

(c) $\sin 40^{\circ} \cos 160^{\circ}-\cos 40^{\circ} \sin 160^{\circ}=\sin \left(40^{\circ}-160^{\circ}\right)$

$$
\begin{aligned}
& =\sin \left(-120^{\circ}\right) \\
& =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

Find the exact value of $\cos \frac{\pi}{12}$ by using $\frac{\pi}{12}=\frac{\pi}{3}-\frac{\pi}{4}$.

Solution

$$
\begin{aligned}
\cos \frac{\pi}{12} & =\cos \left(\frac{\pi}{3}-\frac{\pi}{4} \div=\cos \frac{\pi}{3} \cos \frac{\pi}{4}+\sin \frac{\pi}{3} \sin \frac{\pi}{4}\right. \\
& =\frac{1}{2} \times \frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} \\
& =\frac{\sqrt{2}}{4}+\frac{\sqrt{6}}{4}=\frac{\sqrt{2}+\sqrt{6}}{4}
\end{aligned}
$$

Using your trig tables and the sum/difference identities Find

$$
\begin{array}{ll}
\sin 75^{\circ} & =\sin \left(45^{\circ}+30^{\circ}\right) \\
\sin 15^{\circ} & =\sin \left(45^{\circ}-30^{\circ}\right) \\
\cos 75^{\circ} & =\cos \left(45^{\circ}+30^{\circ}\right)
\end{array}
$$

$$
\cos 15^{\circ}=\cos \left(45^{\circ}-30^{\circ}\right)
$$

Double Angle Identities:

Double Angle Identities

$$
\begin{array}{ll}
\sin (2 \theta)=2 \sin \theta \cos \theta \quad & \cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta \quad \tan (2 \theta)=\frac{2 \tan \theta}{1-\tan ^{2} \theta} \\
& \cos (2 \theta)=2 \cos ^{2} \theta-1 \\
& \cos (2 \theta)=1-2 \sin ^{2} \theta
\end{array}
$$

Example 1- A Triple-Angle Formula

Write $\cos 3 x$ in terms of $\cos x$

Solution:
$\cos 3 x=\cos (2 x+x)$

$$
\begin{aligned}
= & \cos 2 x \cos x-\sin 2 x \sin x \\
= & \left(2 \cos ^{2} x-1\right) \cos x \\
& \quad-(2 \sin x \cos x) \sin x \\
= & \text { Double-Angle Formulas } \\
=2 \cos ^{3} x-\cos x-2 \sin ^{2} x \cos x & \text { Expand } \\
=2 \cos ^{3} x-\cos x-2 \cos x\left(1-\cos ^{2} x\right) & \begin{array}{l}
\text { Pythagorean } \\
\text { identity }
\end{array} \\
=2 \cos ^{3} x-\cos x-2 \cos x+2 \cos ^{3} x & \text { Expand } \\
=4 \cos ^{3} x-3 \cos x & \text { Simplify }
\end{aligned}
$$

Verify the identity $\sin 3 x=3 \sin x-4 \sin ^{3} x$.

$$
\begin{aligned}
& \text { Solution } \\
& \begin{aligned}
\sin 3 x & =\sin (2 x+x) \\
& =\sin 2 x \cos x+\cos 2 x \sin x \\
& =(2 \sin x \cos x) \cos x+\left(1-2 \sin ^{2} x\right) \sin x \\
& =2 \sin x \cos ^{2} x+\sin x-2 \sin ^{3} x \\
& =2 \sin x\left(1-\sin ^{2} x\right)+\sin x-2 \sin ^{3} x \\
& =2 \sin x-2 \sin ^{3} x+\sin x-2 \sin ^{3} x \\
& =3 \sin x-4 \sin ^{3} x
\end{aligned}
\end{aligned}
$$

Evaluate $\sin 2 \theta$, where $\cos \theta=-\frac{2}{5}$ with θ in Quadrant II.
Solution :
We first sketch the angle θ in standard position with terminal side in Quadrant II as in Figure 2.

Since $\cos \theta=x / r=-\frac{2}{5}$, we can label a side and the hypotenuse of the triangle in Figure 2.

To find the remaining side, we

Figure 2 use the Pythagorean Theorem.

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} & & \text { Pythagorean Theorem } \\
(-2)^{2}+y^{2} & =5^{2} & & x=-2, r=5 \\
y & = \pm \sqrt{21} & & \text { Solve for } y^{2} \\
y & =+\sqrt{21} & & \text { Because } y>0
\end{aligned}
$$

We can now use the Double-Angle Formula for Sine.

$$
\begin{aligned}
\sin 2 \theta & =2 \sin \theta \cos \theta & & \text { Double-Angle Formula } \\
& =2\left(\frac{\sqrt{21}}{5}\right)\left(-\frac{2}{5}\right) & & \text { From the triangle } \\
& =-\frac{4 \sqrt{21}}{25} & & \text { Simplify }
\end{aligned}
$$

EXAMPLE 1 Using Double-Angle Identities

If $\cos \theta=-\frac{3}{5}$ and θ is in quadrant II, find the exact value of each expression.
a. $\sin 2 \theta$
b. $\cos 2 \theta$
c. $\tan 2 \theta$

Solution

First, we use identities to find $\sin \theta$ and $\tan \theta$.

$$
\begin{aligned}
& \sin \theta=\sqrt{1-\cos ^{2} \theta}=\sqrt{1-\frac{9}{25}}=\frac{4}{5} \\
& \begin{array}{l}
\theta \text { is in QII so } \\
\sin >0 .
\end{array} \\
& \tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{4 / 5}{-3 / 5}=-\frac{4}{3}
\end{aligned}
$$

a. $\sin 2 \theta=2 \sin \theta \cos \theta$

$$
\text { b. } \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta
$$

$$
\begin{aligned}
& =2\left(\frac{4}{5}\right)\left(-\frac{3}{5}\right) \\
& =-\frac{24}{25}
\end{aligned}
$$

$$
=\left(-\frac{3}{5}\right)^{2}-\left(\frac{4}{5}\right)^{2}
$$

$$
=\frac{9}{25}-\frac{16}{25}
$$

$$
=-\frac{7}{25}
$$

c. $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}=\frac{2\left(-\frac{4}{3}\right)}{1-\left(-\frac{4}{3}\right)^{2}}$

$$
=\frac{-\frac{8}{3}}{1-\frac{16}{9}}=\frac{-\frac{8}{3}}{-\frac{7}{9}}=\left(-\frac{8}{3}\right)\left(-\frac{9}{7}\right)=\frac{24}{7}
$$

6.2 Sum, Difference, and Double-Angle Identities

Sum/Difference Identities

$\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \quad \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
$\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \quad \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$

$$
\begin{aligned}
& \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\
& \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}
\end{aligned}
$$

Double Angle Identities

$$
\begin{array}{ll}
\sin (2 \theta)=2 \sin \theta \cos \theta & \cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta \quad \tan (2 \theta)=\frac{2 \tan \theta}{1-\tan ^{2} \theta} \\
& \cos (2 \theta)=2 \cos ^{2} \theta-1 \\
& \cos (2 \theta)=1-2 \sin ^{2} \theta
\end{array}
$$

Examples
\& when you howe an angle which is NOT
Find the exact value of the following expressions.

a) $\cos 195^{\circ}=$

$\cos \left(45^{\circ}+150^{\circ}\right) \rightarrow \cos 45^{\circ} \cos 150^{\circ}-\sin 45^{\circ} \sin 150^{\circ}$
or $\cos \left(60^{\circ}+135^{\circ}\right)$
$\left(\frac{\sqrt{2}}{2}\right)\left(-\frac{\sqrt{3}}{2}\right)-\left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right)$
$a r \cos \left(240^{\circ}-45^{\circ}\right)$

$$
-\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}
$$

$=\frac{-\sqrt{6}-\sqrt{2}}{4}$
the sum or difference of two special angles.
1

OR $\sin \left(\frac{9 \pi}{12}-\frac{4 \pi}{12}\right)$
$=\sin \left(\frac{3 \pi}{4}-\frac{\pi}{3}\right)=\sin \frac{3 \pi}{4} \cos \frac{\pi}{3}-\cos \frac{3 \pi}{4} \sin \frac{\pi}{3}$

$\left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right)-\left(-\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)$

Write each expression in a simpler form, using identities. Give exact value, if possible.
a) $2 \sin 15^{\circ} \cos 15^{\circ}=\sin \left(2\left(15^{\circ}\right)\right)$
b) $\cos ^{2}(\pi / 8)-\sin ^{2}(\pi / 8)=\cos 2\left(\frac{\pi}{8}\right)$
$\sin 2 \theta=2 \sin \theta \cos \theta$
$=\sin 30^{\circ}$ special
$=\frac{1}{2}$
$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
$=\cos \frac{\pi}{4}$
$=\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2}$
c) $1-2 \sin ^{2}(8)=\cos 2(8)$
$=\cos 16$ not special
d) $10 \cos ^{2}(x)-5=$ ${ }_{5}^{\text {CF }}\left(2 \cos ^{2} x-1\right)$
$=5 \cos 2 x$

Given that $\sin A=\frac{8}{17}$, where A is a Q1 angle; and $\cos B=\frac{24}{25}$, where B is a Q4 angle.
a) Draw two coordinate systems. Sketch a reference triangle for angle A on one of the systems, and one for angle B on the other.

$x^{2}+8^{2}=17^{2}-64$

$$
\sqrt{x^{2}}=\sqrt{225}
$$

$$
x= \pm 15
$$

b) Use identities to find the exact value of: $\sin (A-B)=\sin A \cos B-\cos A \sin B$
$\left(\frac{\downarrow}{17}\right)\left(\frac{24}{-25}\right)-\left(\frac{15}{17}\right)\left(-\frac{7}{25}\right)$

$\sin 2 B=2 \sin B \cos B$
$2\left(-\frac{7}{25}\right)\left(\frac{24}{25}\right)$
$=-\frac{336}{625}$

$$
\begin{aligned}
y^{2}+24^{2} & =25^{2} \\
y^{2} & =\int 44^{2} \\
y & = \pm 7
\end{aligned}
$$

$$
\tan (2 A)=\frac{2 \tan A}{1-\tan ^{2} A} \quad \tan A=\frac{o p}{\alpha 0}=\frac{8}{15}
$$

$$
=\frac{2\left(\frac{8}{15}\right)}{1-\left(\frac{8}{15}\right)^{2}} \rightarrow \frac{\frac{16}{15}}{\frac{225}{225}-\frac{64}{225}}
$$

$$
\cos 2 A \text { any identity will verde. }
$$

$$
\begin{aligned}
=\frac{\frac{16}{15}}{\frac{161}{225}} & \rightarrow \frac{16}{18} \times \frac{225}{161} \\
& =240
\end{aligned}
$$

$$
\frac{240}{161}
$$

$$
=2 \cos ^{2} A-1
$$

$$
\cos ^{2} A-\sin ^{2} A
$$

$$
=2\left(\frac{15}{17}\right)^{2}-1
$$

$$
=\frac{450}{289}-\frac{289}{289} \rightarrow \frac{161}{289}
$$

$$
\left(\frac{15}{17}\right)^{2}-\left(\frac{8}{17}\right)^{2}
$$

$$
\frac{225}{289}-\frac{64}{289}
$$

Do ch 6 Assign up to $\#_{5}\left(\mathrm{try} \#_{6}\right)$

