Tonight's Class:

- Returning Chapter 3 Test
- Working through sections 4.4-4.6
- Transforming Quadratic Graphs (continued)
- Changing Quadratics from General to Vertex Form
- Changing Quadratics from General to Factored Form
- Work on practice questions from worktext

Hand-out (back of sheet)

Summary
 Translations - move left/right, up/down
 Vertical expansions/compressions - multiply every y-val

Reflections - when " a " is negative, the graph is reflected upside-down

Summary

Translations - move left/right, up/down

Vertical expansions/compressions - multiply every y-val

	-6	-4	-2	0		2	4		6					
						-2								
					-2									
					-4									
				-4										

Reflections - when " a " is negative, the graph is reflected upside-down

WT p 290

2. On grid paper, graph $y=x^{2}$. Graph each quadratic function without using a table of values or graphing technology

4 down

$y=x^{2}$	
x	y
-2	4
-1	1
0	0
1	1
2	4

$$
y=a(x-h)^{2}+k
$$

Vertex: (h, k)
Axis of symmetry: $x=h$

If a is positive, then it opens up.

If a is negative, then it opens down.

$$
y=x^{2} \quad \oint_{0} v=(0,0)
$$

WT p 300

Example 2 Graphing a Quadratic Function with Its

 Equation in Standard Form Vertex FormFor the quadratic function $y=-2(x+2)^{2}-3$
a) Identify:
i) the direction of opening downward
ii) the vertex
$(-2,-3)$
iii) the equation of the axis of symmetry $\quad x=-2$
iv) the intercepts
v) the domain and range of the function
b) Sketch a graph.
x-intercepts
none

We can get the intercepts before making a graph.
y-intercept); Let $x=0$ in the equation, and solve:

$$
\begin{align*}
& y=-2(x+2)^{2}-3 \\
& y=-2(0+2)^{2}-3 \tag{0,-11}\\
& y=-2(2)^{2}-3 \\
& y=-2(4)-3 \\
& y=-8-3 \\
& y=-11
\end{align*}
$$

x-intercepts, let $y=0$ in the equation and solve

$$
\begin{aligned}
y & =-2(x+2)^{2}-3 \\
0 & =-2(x+2)^{2}-3 \\
+3 & +3 \\
\frac{3}{-2} & =\frac{-2}{-2}(x+2)^{2} \\
\pm \sqrt{-\frac{3}{2}} & =\sqrt{(x+2)^{2}} \\
\pm \sqrt{\frac{-3}{2}} & =x+2
\end{aligned}
$$

nu x-intercepts.

$$
\begin{aligned}
& \pm \int_{\text {年 }}^{2}=x+2 \text { nu } x \text {-intercepts. } \\
& \text { nope. Solution, }
\end{aligned}
$$

Determine an equation of this graph of a quadratic function.

$$
y=a(x-3)^{2}+2
$$

$$
(-1,10) \quad 10=a(-1-3)^{2}+2
$$

$$
\begin{array}{r}
7 \uparrow \\
x y
\end{array}
$$

$$
\begin{aligned}
& 10=a(-1) \\
& 10=a(-4)^{2}+2
\end{aligned}
$$

$$
\begin{aligned}
& 10=a \\
& 10=a(16)+2 \\
& -2
\end{aligned}
$$

$$
\begin{gathered}
\frac{8}{16}=\frac{16 a}{16}, a=\frac{8}{16} \swarrow^{\text {reduc.if }} \begin{array}{c}
\text { rit } \\
y_{0} \text { can }
\end{array} \\
a=\frac{1}{2}
\end{gathered}
$$

3) Substitute "a" value int the find equation:

$$
y=\frac{1}{2}(x-3)^{2}+2
$$ Function Using Its Characteristics

The equation of the axis of symmetry of the graph of a quadratic function is $x=-1$. The graph passes through the points $\mathrm{A}(0,3)$ and $B(-3,9)$. Determine an equation of the function.

1) the axis of symmetry equation is $x=-1$

$$
\text { Vertex }=(-1, ?)
$$

$y=a(x-h)^{2}+k$, sue I know $x=-1$ is on the vertex, we get:

$$
y=a(x+1)^{2}+k
$$

2) We have $(0,3)$ and $(-3,9)$ both on the graph.

$$
\begin{aligned}
& y=a(x+1)^{2}+k \\
& 3=a(0+1)^{2}+k \\
& 3=a(1)^{2}+k \\
& 3=a+k
\end{aligned}
$$

$$
\begin{aligned}
& 9=a(-3+1)^{2}+k \\
& 9=a(-2)^{2}+k \\
& 9=a(4)+k \\
& 9=4 a+k
\end{aligned}
$$

3) Isolate a variable in one of those equations, then well substitute into the other one:

$$
\begin{aligned}
3 & =a+k \\
-k & -k \\
3-k & =a \\
a & =3-k
\end{aligned}
$$

$$
\begin{gathered}
9=4 a+k \\
9=4(3-k)+k \\
9=12-4 k+k \\
9=12-3 k \\
-12=-12 \\
\frac{-3}{-3}=\frac{-3 k}{-3} \\
k=1
\end{gathered}
$$

4) Now, substitute the K-value
to four out "a".
to fromm out " a ".

$$
\begin{aligned}
\rightarrow a & =3-1 \\
a & =2
\end{aligned}
$$

5) What's the find equation? $y=a(x+1)^{2}+k$
4.5 Changing a Quadratic Function from General to Vertex Form

Focus: completing the square, to change a quadratic equation to vertex/standard form

Complete the Square

$$
\begin{aligned}
& \begin{array}{l}
y=2 x^{2}+12 x+13 \\
y=2\left(x^{2}+6 x\right)+13
\end{array} \\
& \begin{array}{ll}
\left(\frac{b}{2}\right)^{2}=\left(\frac{6}{2}\right)^{2}=(3)^{2}=9 & \begin{array}{l}
\text { Divide the number in front of } x^{2} \text { out } \\
\text { of first } 2 \text { terms }
\end{array} \\
y=2\left(x^{2}+6 x+9-9\right)+13 & \begin{array}{l}
\text { Determine the perfect } \\
\text { square number }
\end{array} \\
\begin{array}{l}
\text { Add and subtract the number } \\
\text { Do this inside the brackets }
\end{array} \\
y=2(x+3)^{2}-5 & \begin{array}{l}
\text { Factor the first 3 terms } \\
\text { Add up the leftovers } \\
\text { In this case } 2 \mathrm{x}-9+13=-5
\end{array} \\
\text { Vertex is }(-3,-5)
\end{array} \\
& \text { Remember to switch the x-coordinate }
\end{aligned}
$$

WT p 313

Example 1

Determine the coordinates of the vertex of the parabola with equation

$$
y=\underbrace{2 x^{2}+16 x}+24
$$

factor out the 2, from the first two term

$$
\begin{aligned}
& y=2\left(x^{2}+8 x\right)+24 \\
& \text { figure out whet add in, } \quad\left(\frac{b}{2}\right)^{2}=\left(\frac{8}{2}\right)^{2} \\
& \text { so we gisedt }=(4)^{2} \\
& =16 \\
& y=2\left(x^{2}+8 x+16-16\right)+24 \\
& y=2\left(x^{2}+8 x+16\right)-32+24
\end{aligned}
$$

```
\(y=2(x+4)^{2}-8\)
```

vertex: $(-4,-8)$

WT p 313

Example 2
 Completing the Square for an Equation

 of the Form $y=a x^{2}+b x+c, a<0$ \squareDetermine the equation of the axis of symmetry of the parabola with equation $y=-4 x^{2}+9 x-2$.

$y=-4(\underbrace{x^{2}-\frac{9}{4} x+\frac{81}{64}})+\frac{81}{16}-2$
$y=-4\left(x-\frac{9}{8}\right)^{2}+\frac{81}{16}-\frac{2}{1} \cdot \frac{16}{16}$
$y=-4(x-9 / 8)^{2}+\frac{81}{16}-\frac{32}{16}$

$$
-\frac{44}{1} \times \frac{-8 \mid}{64 \div 4}=\frac{-\mid \times 81}{16} \quad-\frac{9}{8}
$$

$y=-4\left(x^{2}-\frac{9}{4} x+\frac{81}{64}-\frac{81}{64}\right)-2$
quation $y=-4 x^{2}+9 x-2$.

$y=-4\left(x^{2}-\frac{9}{4} x\right)-2$
$y=-4(x-9 / 8)^{2}+\frac{49}{16}$
$-4 \times \frac{-81}{64}=\frac{324}{64 \div 4} \div \frac{81}{16}$
equaten of axis of symuthy $\quad x=9 / 8$

Try:
WT p 316, \#6a
WT p 318, \#8b

4.6 Changing from General Form to Factored Form

Focus: changing a quadratic equation to factored form to help analyze it

Getting Information about the Graph from General Form

- To find the y-intercept, make $x=0$ and solve for y
- To find the x-intercepts, make $y=0$ and solve the quadratic equation for x
- To find the axis of symmetry, average the x -intercepts

$$
\circ x=\frac{x_{1}+x_{2}}{2}
$$

- To find the vertex
x-coordinate is same number as in the axis of symmetry
- y-coordinate is found by substituting that x-value into the quadratic equation

Let's try this!

$$
y=4 x^{2}+4 x-15 \quad \text { in general form }
$$

find its x-intercepts, let $y=0$ and solve for x
$\left(-\frac{5}{2}, 0\right) \quad x=-\frac{5}{2}$

Axis of symmetry is fond
by averaging these:

$$
\frac{x_{1}+x_{2}}{2}
$$

$$
\frac{-5 / 2+3 / 2}{2}=\frac{-2 / 2}{2}=\frac{-1}{2}
$$

$$
\begin{aligned}
& \text { Vertex }=(-1 / 2, y) \\
& 1 \text { te get it, ply in } \begin{array}{l}
x-\text { villus } f \text { the } \\
\text { gender form equation }
\end{array} \\
& y=4 x^{2}+4 x-15
\end{aligned}
$$

$$
\begin{aligned}
& 0=4 x^{2}+4 x-15 \\
& 0=4 x^{2}+10 x-\underline{6 x-15} \\
& 0=2 x(2 x+5)-3(2 x+5) \\
& 0=(2 x+5)(2 x-3) \\
& 2 x+5=0 \\
& +3 \quad+3 \\
& \frac{2 x}{2}=\frac{5}{2} \\
& \frac{2 x}{2}=\frac{3}{2} \quad\left(\frac{3}{2}, 0\right) \\
& x=3 / 2
\end{aligned}
$$

$$
\begin{aligned}
\text { Vertex } \Rightarrow \quad y & =4\left(-\frac{1}{2}\right)+\frac{4}{1}\left(-\frac{1}{2}\right)-1- \\
& =\frac{4}{1}\left(+\frac{1}{4}\right)+\left(\frac{-4}{2}\right)-15 \\
& =\frac{4}{4}+-2-15 \\
\left(-\frac{1}{2},-16\right) & =1+-2-15 \\
& =-16
\end{aligned}
$$

WT p 323

Example 2 Equation in General Form

Sketch a graph of each quadratic function.
a) $y=4 x^{2}+4 x-15$

$$
\begin{gathered}
y \text {-ntreept, let } x=0 \\
y=4(0)^{2}+4(0)-15 \\
y=-15
\end{gathered}
$$

$x-$ entraps, let $y=0$
(we did this, above)
$(-5 / 2,0)$ and $(3 / 2,0)$
vortex, we fond

$$
(-1 / 2,-16)
$$

$$
y=(2 x+5)(2 x-3)
$$

factored form

AIs
also dore above,

$$
x=-1 / 2
$$

$$
y=a(x-p)(x-q)
$$

a: concave up or down

$a(-p)(-q): y$ intercept
$p \& q: x$ intercepts

Since we get the x-intercepts from the factors, this is sometimes called INTERCEPT, or FACTORED form.

WT 323: Try "Check Your Understanding" Db

For next class

- NO class on Tuesday, February 21
- Work on the worktext questions for 4.1, 4.3-4.6
- In section 4.4, there's a mistake in the answer given for \#7. It should say: +1/4 in the equation, not $-1 / 4$
- Start on Chapter 4 Hand-in assignment

