Thursday, May 25, 2023 9:55 AM

Tonight's Class:

- 6.3 Proving Identities

$$
\begin{array}{r}
\text { Pre-Calc } 12-\text { Unit } 22 \\
\text { Page } 48
\end{array}
$$

6.3 Proving Identities

When we prove identities:

- Step by step, use algebra and/or Basic Identities to change the way either the left- hand side (LHS) or the right-hand side (RHS) looks.
- Think of the " - " sign separating the LHS and RHS as a barrier. Don't take terms from one side of the equals sign to the other.
- When the LHS and the RHS look exactly the same, the identity is proven.

Strategies for Proofs

- Write each step directly below the previous one.
- Don't skip steps - aim to be as CLEAR as possible.
- See if there's any factoring you can do, especially GCF or difference of squares.
- Don't cancel anything, unless you have identical factors on the top and bottom of an expression.
- If rational expressions are added/subtracted together, pet a common denominator so you can combine the expressions and simplify.
- If possible, substitute known identities to simplify expressions.
- If the LHS and RHS look as below, where they are almost reciprocals of each other, multiply one side, top and bottom, by the conjugate of the binomial. Then use a Pythagorean identity to simplify further

$$
\begin{aligned}
& \frac{\cos ^{2} y}{\cos y(1-\sin y)} \\
& \frac{\cos y}{1-\sin y}
\end{aligned}
$$

Prove
Pre-Calc $12-$ Unit 2
Page 49

1. $(\sin x+\cos$
$(\sin x+\cos x)(\sin x+\cos x)$ $\sin ^{2} x+\sin x \cos x+\cos x \sin x+\cos ^{2} x$ $\sin ^{2} x+2 \sin x \cos x+\cos ^{2} x$
$1+2 \sin x \cos x$

$$
\begin{array}{l|l}
\tan x=\frac{\sin x}{\cos ^{2} x} & \begin{array}{c}
2 \cdot \tan ^{2} x \sin ^{2} x-\tan ^{2} x \\
\tan ^{2} x\left(\sin ^{2} x-1\right)
\end{array} \\
\tan ^{2} x=\frac{\sin ^{2} x}{\cos ^{2} x} & \begin{array}{l}
\frac{\sin ^{2} x}{\cos ^{2} x}\left(\sin ^{2} x-1\right)
\end{array} \\
\begin{aligned}
\frac{\sin ^{2} x}{\cos ^{2} x} \frac{\left(-\cos ^{2} x\right)}{\sin ^{2} x \cos ^{2} x} \\
-\operatorname{cin}^{2} x
\end{aligned}
\end{array}
$$

$$
\text { 3. } \sec ^{4} x
$$

$\tan ^{4} x+2 \tan ^{2} x+1$
$\tan ^{4} x+1 \tan ^{2} x+1 \tan ^{2} x+1$ $\tan ^{2} x\left(\tan ^{2} x+1\right)+1\left(\tan ^{2} x+1\right)$
$\left(\tan ^{2} x+1\right)\left(\tan ^{2} x+1\right)$

$$
\begin{aligned}
& \left.n^{2} x+1\right)\left(\tan ^{2} x+1\right) \\
& \left(\sec ^{2} x\right)\left(\sec ^{2} x\right)
\end{aligned}
$$

$\sec ^{4} x$

$-\quad 9 \cos ^{2} x$

$9+9 \sin x-9 \sin x-9 \sin ^{2} x$
$9-9 \sin ^{2} x$

$$
9\left(1-\sin ^{2} x\right)
$$

$$
\begin{aligned}
& \left.\left.(5 x y)^{2}(x+3)^{2}\right)_{2}^{2}=4\right)^{2}=7^{2} \\
& =5^{2} x^{2} y^{2} \neq x^{2}+3^{2} \\
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \sin ^{2} \theta-1+\cos ^{2} \theta=0 \\
& \sin ^{2} \theta-1=-\cos ^{2} \theta \\
& 4^{2}+3^{2} \\
& =16+9 \neq 49
\end{aligned}
$$

$$
\begin{gathered}
9-9 \sin ^{2} x \\
9\left(1-\sin ^{2} x\right) \\
9 \cos ^{2} x
\end{gathered}
$$

What can help us get more comfortable with math questions? Do more of them
Sleep on it

TB, page 311

Your Turn
Prove that $\frac{\sin 2 x}{\cos 2 x+1}=\tan x$ is an identity for all permissible values of x.

$\frac{2 \sin x \cos x}{2 \cos ^{2} x-1+1}$
$\frac{2 \sin x \cos x}{2 \cos ^{2} x}$
$\frac{\sin x}{\cos x}$

Remember how we get common denominators when we add or subtract
fractions:
$\frac{4}{4} \cdot \frac{2}{5}+\frac{3}{4} \cdot \frac{5}{5}$
$=\frac{8}{20}+\frac{15}{20}$

$$
=\frac{23}{20}
$$

We use the same method to simplify identities that are rational expressions. This is often helpful when we try to prove an identity.

$$
\begin{aligned}
& \begin{array}{r}
\text { Pre-Cale } 12 \text { - Unit } 2 \\
\text { Page } 50
\end{array} \\
& \text { 5. } \frac{1}{1+\cos x}+\frac{1}{1-\cos x} \\
& \frac{(1-\cos x)}{(1-\cos x)} \frac{1}{(1+\cos x)}+\frac{1}{(1-\cos x)} \cdot \frac{(1+\cos x)}{(1+\cos x)} \\
& 1-\cos x+1+\cos ^{2} x \\
& (1-\cos x)(1+\cos x) \\
& \frac{2}{1+\cos 4 x-\cos x-\cos ^{2} x} \\
& \frac{2}{1-\cos ^{2} x} \\
& \frac{2}{\sin ^{2} x}
\end{aligned}
$$

What is a conjugate? How does multiplying by it help?

- The conjugate of a binomial looks exactly like the binomial, except that the sign between the two terms is OPPOSITE from what it is in the original binomial.
- When we multiply an expression, top \& bottom, by the conjugate of the binomia that is in the numerator or denominator, we are really multiplying by 1
- The resulting expression can be written in a different form, by using a Pythagorean Identity.

$$
\begin{gathered}
\text { Pre-Calc } 12-\text { Unit } 2 \\
\text { Page } 50
\end{gathered}
$$

5. $\frac{1}{1+\cos x}+\frac{1}{1-\cos x}$
$2 \csc ^{2} x$
6. $\frac{\cos y}{1-\sin y} \cdot \frac{1+\sin y}{1+\sin y}=\quad \frac{1+\sin y}{\cos y}$ $\cos y(1+\sin y)$ $1+\sin y-\sin y-\sin ^{2} y$
$\cos y(1+\sin y)$
$1-\sin ^{2} y$
$\frac{\cos y(1+\sin y)}{\cos ^{2} y}$
$\cos ^{2} y \quad 1+\sin y$
7. $2 \sec x \quad \frac{1+\sin y}{\cos y}$
$\cos x+\frac{1+\sin x}{\cos x}$
$\frac{2}{1}\left(\frac{1}{\cos x}\right) \quad \frac{\cos x}{1+\sin x} \cdot \frac{\cos x}{\cos x}+\frac{(1+\sin x) \cdot(1+\sin x)}{\cos x}+\frac{1+\sin x}{1+\sec x}$
$\frac{2}{1}\left(\frac{1}{\cos x}\right) \quad \frac{\cos x}{1+\sin x} \cdot \frac{\cos x}{\cos x}+\frac{(1+\sin x)}{\cos x} \cdot \frac{(1+\sin x)}{1+\sin x}$
$\frac{2}{\cos x}$
$\frac{\cos ^{2} x+(1+\sin x)(1+\sin x)(\cos x)}{(1+\sin x}$
$\cos x \quad \cos ^{2} x+1+\sin x+\sin x+\sin ^{2} x$
$\frac{\left.\cos ^{2} x+1+\sin x\right)(\cos x)}{(1+\sin x}$
$\frac{1+1+2 \sin x}{(1+\sin x)(\cos x)}=\frac{2+2 \sin x}{(1+\sin x)(\cos x)}=\frac{2(1+\sin x)}{(1+\sin x)(\cos x)}=\frac{2}{\cos x}$
8. $\frac{\sin x}{1+\cos x} \quad=\quad \frac{1-\cos x}{\sin x}$
$\sin x \cdot(1-\cos x)$
$\frac{\sin x}{(1+\cos x)} \cdot(1-\cos x)$
$\sin x(1-\cos x)$
$1-\cos x+\cos 5 x-\cos ^{2} x$
$\sin x(1-\cos x)$
$\left[-\cos ^{2} x\right.$
$\frac{\sin x(1-\cos x)}{\sin ^{2} x}$
$\frac{1-\cos x}{\sin x}$
