Class_13 May 25 More Trig Identities

Thursday, May 25, 2023 9:55 AM

Tonight's Class:
¢ 6.3 Proving Identities

6.3 Proving Identities
When we prove identities:

®  Step by step, us
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algebra and/or Basic ldentities to change the way either the

lefi- hand side (LHS) or the right-hand side (RHS) looks.

.

Think of the *“ = " sign separating the LHS and RHS as a barrier, Don't 1ake terms

from one side of the equals sign to the other.

When the LHS and the RHS look exactly the same, the identity is proven,

Strategies for Proofs

® Write each step directly below the previous one.

*  Don't skip steps — aim to be as CLEAR as possible,

® Seeif there’s any factoring vou can do, especially GCF or difference of squares.

*  Don’t cancel anyihing, unless you have identical factors on the top and bottom of an

expression

#  If rutional expressions are added /subtracted together, get a common denominator so
you can combine the expressions and simplify.

# If possible, substitute known identities to simplify expressions,

If the LHS and RHS look as below, where they are almost reciprocals of each other,
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What can help us get more comfortable with math questions?
- Do more of them
- Sleep oniit

TB, page 311

Your Turn
Prove that

Sm% = tan x is an identity for all permissible values of x.
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We use the same method to simplify identities that are rational expressions.
This is often helpful when we try to prove an identity.
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What is a conjugate? How does multiplying by it help?

¢ The conjugate of a binomial looks exactly like the binomial, except that the sign
between the two terms is OPPOSITE from what it is in the original binomial.

¢ When we multiply an expression, top & bottom, by the conjugate of the binomial
that is in the numerator or denominator, we are really multiplying by 1.

¢ The resulting expression can be written in a different form, by using a Pythagorean Identity.
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