Tonight's Class:

- Review of Earthquake procedures
- Making trig equations - partner activity
- 6.1 Trigonometric Identities
- Chapter 5 Test next Tuesday, Oct 25

DROP, COVER \& HOLD ON

Used in the event of an earthquake, explosion, or any event that shakes the school - Quickly move away from obvious hazards

- DROP - low to the ground
\square Cover - take COVER under a sturdy table, desks, furniture, or other large sturdy items
\square HOLD ON - to the furniture you are under and stay there until the shaking stops After the shaking stops, wait 60 seconds and then EVACUATE via the shortest safe route. Report to and assemble outside at the designated assembly site.
*Principal or other designate will determine next steps.

CHAPTER

Trigonometric Identities

Trigonometric functions are used to model behaviour in the physical world. You can model projectile motion, such as the path of a thrown javelin or a lobbed tennis ball with trigonometry. Sometimes equivalent expressions for trigonometric functions can be substituted to allow scientists to analyse data or solve a problem more efficiently. In this chapter, you will explore equivalent trigonometric expressions.

Chapter 6: Trigonometric Identities

6.1 Trigonometric Identities

In this chapter we talk about trigonometric identities. Trigonometric identities look like trigonometric equations, but there's a difference.

$\frac{\text { EXCEPI } x=-3}{\csc x=1}$
This can be solved:

Identity - an equation that is true for ALL permissible values

$$
>_{\text {don't }} \text { try to divial by 0!! }
$$

When we are given an identity to prove, we see different expressions on the left-side and right-side of the equation. Proving the identity means we must change the expressions so that we end up with the SAME expression on both sides of the equation.

Our tools to do this are

- algebra skills (getting common denominator, combining terms, factoring)
- basic identity substitutions

$$
\square=
$$

We will be verifying phd proving trigonometric identities.

- Verifying an identity means we show it seems true. Done by:
- substituting in a specific value and confirming that, for that value, the left and right sides of the identity are equal
- graphing the left and right sides of the identity separately, and confirming that the graphs are exactly the same in that window
- Proving an identity means using algebra and/or Basic Identities to change the form of one or both sides of the identity, until the two sides are exactly the same.

$\sec (\pi / 5)$	$\frac{\tan (\pi / 5)}{\sin (\pi / 5)}$
$\frac{1}{\cos (\pi / 5)}$	
1.236067977	1.236067977

Example
Verify graphically: $\quad \frac{\sin ^{3} x}{\sin x}=\sin ^{2} x$
$Y_{1}=\sin ^{3}(x) / \sin (x)$
$Y_{2}=\sin ^{2}(x)$

They look like then
the
same

We will use these a lot in this chapter!
Pre-Calc 12 - Unit 2
Page 40

Basic Identities

$\left\{\begin{array}{c}\text { Basic Identities } \\ \begin{array}{r}\text { Pythagorean Identities } \\ \sin ^{2} \theta+\cos ^{2} \theta=1 \\ \sin ^{2} \theta=1-\cos ^{2} \theta \\ \text { ar ar. } \\ \cos ^{2} \theta=1-\sin ^{2} \theta\end{array} \\ 1+\tan ^{2} \theta=\sec ^{2} \theta \\ 1+\cot ^{2} \theta=\csc ^{2} \theta\end{array}\right.$
$x^{2}+y^{2}=1^{2}$
$(x)^{2}+y^{2}=1$
sunctince in
$(\cos \theta)^{2}+(\sin \theta)^{2}=1$
$\cos ^{2} \theta+\sin ^{2} \theta=1$

Reciprocal Identities

$\csc \theta=\frac{1}{\sin \theta}$
$\sec \theta=\frac{1}{\cos \theta}$
$\cot \theta=\frac{1}{\tan \theta}$
Quotient Identities

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

$$
\cot \theta=\frac{\cos \theta}{\sin \theta}
$$

Addition Identities

$\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \quad \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
$\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta \quad \cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$

$$
\begin{aligned}
& \tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \\
& \tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}
\end{aligned}
$$

Double Angle Identities

$\sin (2 \theta)=2 \sin \theta \cos \theta \quad$	$\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta \quad \tan (2 \theta)=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
	$\cos (2 \theta)=2 \cos ^{2} \theta-1$
	$\cos (2 \theta)=1-2 \sin ^{2} \theta$

Practice Using Basic Identities

Match the expressions on the left with those on the right-hand column. Put the letter of the expression that matches in the blank provided. Each gets used exactly once.
G
H
$2 \frac{1}{\cos \beta}$
B. $\sin ^{2} B$

C
3. $\csc ^{2} B$
C. $\cot ^{2} B+1$

A
4. $\sin ^{2} B+\cos ^{2} B=1$
D. $\cos ^{2} B$

J
5. $\begin{array}{r}\cot B \sin B=\frac{\cos B}{\sin B}=\sin B \\ =\cos B\end{array}$

F
6. $\frac{\cos B}{\sin B}$
F. $\quad \cot B$

B
7. $1-\cos ^{2} B$
G. $\tan B$
$\sin ^{2} \theta+\cos ^{2} \theta=1$
K
8. $\frac{\cos ^{2} B}{1+\sin B}=\frac{1-\sin ^{2} B}{1+\sin B}$
. $\sec B$
E 9. $\sec ^{2} B \quad \begin{array}{r}=\frac{(1+\sin B)(1-\sin B)}{1+\sin B} \\ =1-\sin B\end{array}$
I

L

$$
\begin{aligned}
& L \quad \text { 11. } \frac{\cos B}{\cot B}=\frac{\cos B}{\frac{\cos B}{\sin B}}=\begin{aligned}
& \cos B \div \frac{\cos B}{\sin B} \mathrm{~K} . \quad 1-\sin B \\
& \text { 12. } 1-\sin ^{2} B \\
&(\text { rescongenants }) \frac{\cos B}{1} \cdot \frac{\sin B}{\cos B} \mathrm{~L} . \quad \sin B \\
&=\sin B
\end{aligned}
\end{aligned}
$$

perfect square $\left.\begin{array}{l}\text { pefect-sum } \\ \text { (ifeerna } \\ \text { of } \\ \text { squab }\end{array}\right)$

Factor:

1) $\sin ^{2} \theta-1=(\sin \theta+1)(\sin \theta-1)$
2) $1-\cot ^{2} \theta=(1+\cot \theta)(1-\cot \theta)$

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

More Practice

Simplify each expression below. Look for substitutions you can make, using basic identities. Your final answer should contain no more than one trigonometric function.

$$
\begin{aligned}
& \begin{aligned}
\\
\left.\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =1 \\
& =\cos ^{2} \theta-1 \\
& =\cos ^{2} \theta-\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& =\cos ^{2} \theta-\sin ^{2} \theta-\cos ^{2} \theta \\
& =-\sin ^{2} \theta
\end{aligned} \right\rvert\, \begin{aligned}
5 \cdot 1+\tan ^{2} \theta=\sec ^{2} \theta \\
=1+1 \\
=2
\end{aligned}
\end{aligned} \\
& \frac{(2)(5)}{(2)(10)}=\frac{10}{20}=\frac{1}{2}
\end{aligned}
$$

$$
=\cos ^{2} \theta-\sin ^{2} \theta-\cos ^{3} \theta
$$

$$
=-\sin ^{2} \theta
$$

7. $\csc ^{2} \theta-\cot ^{2} \theta=1$

$$
\left\{\begin{aligned}
1+\cot ^{2} \theta & =\csc ^{2} \theta \\
-\cot ^{2} \theta & -\cot ^{2} \theta \\
1 & =\csc ^{2} \theta-\cot ^{2} \theta
\end{aligned}\right.
$$

$$
\begin{aligned}
& 10 \frac{\sqrt{1-\sin ^{2} x}}{\sqrt{1+\tan ^{2} x}} \\
&= \frac{\sqrt{\cos ^{2} x}}{\sqrt{\sec ^{2} x}} \\
&= \frac{\cos x}{\sec x} \\
&= \frac{\cos x}{\frac{1}{\cos x}} \\
&= \cos x \cdot \tan ^{2} x \\
&= \frac{\cos x}{1} \cdot \frac{11.1-\sec ^{2} x}{\cos x} \\
&=
\end{aligned}
$$

8. $\sin ^{2} \theta+\cos ^{2} \theta+\tan ^{2} \theta$

$$
\begin{aligned}
& =1+\tan ^{2} \theta \\
& =\sec ^{2} \theta
\end{aligned}
$$

$$
\begin{aligned}
& -1 \\
& =2
\end{aligned}
$$

$$
\text { 9. } \frac{\sin ^{2} \theta+\sin \theta}{\cos \theta+\cos \theta \sin \theta}
$$

$$
=\frac{\sin \theta(\sin \theta+1)}{\cos \theta(1+\sin \theta)}
$$

$$
=\frac{\sin \theta}{\cos \theta}=\tan \theta
$$

12. $\sec ^{2} x-1$

$$
\begin{gathered}
\frac{(2)(5)}{(2)(10)}=\frac{10}{20}=\frac{1}{2} \\
\frac{2+5(5)}{(22(10)}=\frac{5}{10}=\frac{1}{2} \\
\frac{2+10}{\frac{2+5}{2+10}}=\frac{7}{12} \\
\sqrt{9+16}=\sqrt{25}=5 \\
3+4=x+y \\
\sqrt{x^{2}+y^{2}} \neq x
\end{gathered}
$$

6.0 Algebra Skills Used in Chapter 6

Multiplying Trigonometric Expressions

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
& \underbrace{(\cos x+2)(\cos x-7)}_{\text {2. } x(2 \sin x-1)}=2 \sin ^{2} x-\sin x \\
&=\cos ^{2} x-7 \cos x+2 \cos x-14 \\
&=\cos ^{2} x-5 \cos x-14 \\
&\text { 3. } \left.\begin{array}{rl}
(\cos x-3)^{2} & = \\
& \left.=\cos ^{2} x-3\right)(\cos x-3) \\
& =\cos ^{2} x-3 \cos x-3 \cos x+9
\end{array}\right)=6 \cos x+9
\end{aligned}
\end{aligned}
$$

Factoring Trigonometric Expressions

$$
\begin{aligned}
& \text { Greatest Common Factor } \\
& \text { 1. } \sin ^{2} x-3 \sin x=\sin x(\sin x-3) \\
& \text { 2. } 5 \tan ^{2} x+15 \tan x=5 \tan x(\tan x+3)
\end{aligned}
$$

Difference of Perfect Squares

$$
\begin{aligned}
& \text { Difference of Perfect Squares } \\
& \text { 1. } \sin ^{2} x-1 \\
& \text { 2. } 1-\tan ^{2} x=(\sin x+1)(\sin x-1)
\end{aligned}
$$

Trinomial

1. $2 \cos ^{2} x+\cos x-1$

$$
(2 \cos x-1)(\cos x+1)
$$

check: $2 \cos ^{2} x+2 \cos x-\cos x$

$$
\begin{aligned}
& \text { Pre-Calc 12-Unit } 2 \\
& \text { Page } 44 \\
& =\left(2 b^{2}+1 b-1\right.
\end{aligned}\left\{\begin{array}{l}
A C=(2)(-1) \\
=-1)(b+1) \\
\text { multto-2 } \\
a d 1 \text { to } 1 \\
-1,2
\end{array} \quad \begin{array}{rl}
& \quad 2 b^{2}-1 b+2 b-1 \\
& =b(2 b-1)+1(2 b-1) \\
& =(2 b-1)(b+1)
\end{array}\right.
$$

$A C=-3$
2. $3 \sin ^{2} x+2 \sin x-1$
$=3 \sin ^{2} x+3 \sin x-\sin x-1$
$=3 \sin x(\sin x+1)-1(\sin x+1)$
$\left.\begin{array}{l}\operatorname{sum}=2 \\ \operatorname{pod}=-3\end{array}\right\} 3,-1$
$=(\sin x+1)(3 \sin x-1)$

Adding/Subtracting Trigonometric Terms

We can only add like terms

- Terms must contain the same angle
- Terms must use the same trigonometric function

Which of these terms can be combined?
$3 \sin x+4 \sin x$
$=7 \sin \mathrm{x}$

Errors to Avoid

Omitting the angle $\begin{aligned} & \text { cos }+4 \cos \end{aligned} \quad$ These terms contain no angle - they don't mean anything!
$\cos x+4 \cos x=5 \cos x$
Incorrect cancelling
You can never "cancel" the angle, or any part of the angle, in a trigonometric one can be reduced:
expression.

$$
\frac{\cos x}{x} \frac{\tan 2 x}{2}=\frac{3 \sin x}{3 x}=\frac{\sin x}{x}
$$

More incorrect cancelling
You can NEVER cancel just a portion of a factor
$\frac{\cos x+1}{\cos x}=$
$\frac{(\cos x+1)(\cos x-1)}{(\cos x+1)}=\operatorname{COS} X-1 \quad$ YounNOT cancel the " $\cos x$ " on the top $\cos x$ " on the bottom!
with CAN cancel the " $\cos x+1$ " factors

To CORRECTLY simplify a rational expression, factor it completely.
If the numerator and the denominator contain the same factor, you can reduce.
For example: $\quad \frac{\sin ^{2} x+8 \sin x+12}{\sin ^{2} x+\sin x-30} \frac{(\sin x+6)(\sin x+2)}{(\sin x-5)(\sin x+6)}=\square \frac{\sin x+2}{\sin x-5}$
Notice that we cannot reduce $\frac{\sin x+2}{\sin x-5}$ by canceling the $\sin x$'s, because sin x is NOT
$\sin x+2$

EVERY TIME YOU DO THIS:
a factor of the numerator and the denominator. $\quad \frac{\sin x+2}{\sin x-5} \neq \frac{2}{-5}$

A KITTEN DIES.

Distributing when you can't:
$\cos (x+y) \quad$ This does NOT equal $\cos x+\cos y!$
We are not multiplying " \cos " with $(x+y)$.
What this expression DOES mean is the
cosine of the angle " $x+y$ "

For example, consider what happens if $x=15^{\circ}$ and $y=28$
$\cos \left(15^{\circ}+28^{\circ}\right)=\cos 43^{\circ}=0.73135$
$\cos \left(15^{\circ}\right)+\cos \left(28^{\circ}\right)=1.84887$ not eg. 1 .
This shows us that $\cos (x+y) \neq \cos x+\cos y$ This!

Practice

(6.1) TB p 296: 3, 4, 5a, 6b, 10, 14-16 **Don't have to identify NPVs

mportant Things

- Chapter 5 hand-in assignment due Tuesday, Oct 25.

Understanding the concepts in this assignment can help you prepare for the test.

- Chapter 5 Test next class - Tuesday, Oct 25

Includes a NO-calculator section
Given a sinusoidal equation, be able to sketch it without using technology.

- Given a sinusoidal graph, be able to figure out its equation without using technology.
- Know how to find period, phase shift, amplitude, vertical displacement, spacing between key points, coordinates of key points.

Know the period and domain for tangent, and how to adjust them if there's a horizontal stretch.

- Know how to algebraically solve an equation similar to the example in the notes, page 36. (Or, like \#12b in the hand-in assignment)

Understand the method for graphically solving trigonometric equations
Be able to create a circular motion equation and solve it. (similar to TB p 279, \#19)

