Class_14 Feb 23 - More Quadratics
Wednesday, February 15, 2023 3:03 PM

Jody Primeau 1:55 PM
LEC Staff Hello Everyone! I plan to visit classes next Wednesday and Thursday to talk to students about Scholarships and Graduation. Probably about 10 minutes per class. Mornings, I will be there sometime between $11: 00$ and $12: 30$, evenings between $6: 30$ and 7:30. If these times do not work well for you, please let me know. I am also attaching a PowerPoint. If you could please have that available for my visit. Thanks! Jody

Tonight's Class:

- Scholarships/Graduation presentation, counselor
- \#thatwellness thing - Wednesday, March 1
- Any questions from last class? (4.4-4.6)
- Quadratic Functions Group Activity
- Working through section 4.7
- Modelling Quadratics (Max/Min questions)
- Work on practice questions from worktext
- Chapter 4 Test (4.1-4.7) on Tuesday, Feb 28

$$
\begin{aligned}
& p 307 \# 8 b \\
& y=-\frac{1}{4}(x+8)^{2}-1
\end{aligned}
$$

\#thatwellnessthing
our fourth annual open house S community resource fair
WED. MARCH 1, 2023
4:30 PM - 7:00 PM
21405A 56 Avenue, Langley

Vertex form

$$
y=a(x-h)^{2}+k
$$

vertex: (h, k)
a)

$$
\begin{array}{lc}
\text { vertex } & (-8,-1) \\
\text { domain } & x \in \mathbb{R} \\
\text { range } & y \leq-1
\end{array}
$$

direction of paris - downward ($-\frac{1}{4}$ tells us) ax is symmetry equation $x=-8$ intercepts
x-intugpti- none
y intreapt, process: let $x=0$

$$
\begin{aligned}
& y=-\frac{1}{4}(x+8)^{2}-1 \\
& y=-\frac{1}{4}(0+8)^{2}-1 \\
& y=-\frac{1}{4}(8)^{2}-1 \\
& y=-1 / 4(64)-1 \\
& y=-\frac{64}{4}-1 \\
& y=-16
\end{aligned}
$$

x	y
-12	-5
-8	-1
-4	-5

$$
(0,-17)
$$

$$
\begin{aligned}
& =-1 / 4(4)^{2}-1 \\
& =-1 / 4(16)-1 \\
& =-\frac{16}{4}-1 \\
& =-4-1 \\
& =-5
\end{aligned}
$$

$\left.p^{317} 8 a\right)$

$$
y=2 x^{2}+5 x-3
$$

coordinate vertex
in facbr constat out

4.7 Modelling Problems with Quadratic Functions

Focus: write a quadratic function to model a problem, then solve the problem
In this section, you will solve
application problems using quadratic
equations.
equations.
These are called Max/Min problems because the quadratic equation is used to model the application and the vertex is used to answer questions about the maximum or minimum of the quadratic.

Max and Min Problems

What is the definition of the
maximum or minimum point

of a quadratic function? | The vertex of a quadratic! |
| :--- |
| inaction is either a |
| maximum point or a |

Steps:

1. When you have a word problem in this section, you will create two equations.
2. Use substitution to form one equation. This equation becomes the quadratic function that represents the word problem.
3. Convert the quadratic from general (trinomial) form to vertex form.
4. Use the vertex to answer the Max/Min question or use other operations with the equation to answer other questions.

Maximum Area Word Problem - Solved by Completing the Square

Maximizing Revenue Word Problem (Completing the Square): Straightforward Worked Example!

Page 340, Ex 1

let $x=$ ore of the numbers
let $y=$ the other number

$$
\begin{aligned}
& \text { 1) isolate the " } y \text { "term } \\
& \text { in the fist equation } \\
& x+y=20 \\
& -x \\
& y=20-x
\end{aligned}
$$

2) substivte that expression into
the OTHER equation

$$
\begin{aligned}
& x^{2}+y^{2}=\text { value } \\
& x^{2}+(20-x)^{2}=\text { value }
\end{aligned}
$$

3) simplify the equation

$$
x^{2}+(20-x)(20-x)^{2}=\frac{\text { sump }}{\text { value }} \text { (var }
$$

$$
\begin{aligned}
x^{2}+400-\underline{20 x}-20 x+x^{2} & =(\text { (value) } \\
2 x^{2}-40 x+400 & =(\text { value Sm }
\end{aligned}
$$

()
4) changes for,
$\begin{aligned}\text { sum }) & =2 x^{2}-40 x+400 \\ & =2\left(x^{2}-20 x+100-100\right)+400\end{aligned}$

$$
\begin{align*}
& =2\left(x^{2}-20 x+100\right)-200+400 \tag{20}\\
& =2(x-10)^{2}+200 \tag{-10}
\end{align*}
$$

$$
\begin{aligned}
& \text { Minimum value }=200 \\
& \text { check: } 10^{2}+10^{2}=200
\end{aligned}
$$

Page 340, Check your understanding , \#|

1. Two numbers have a difference of 18 . Does their product have a maximum or a minimum

$$
\text { let } y=\text { other number }
$$ value? Determine his value and the two nurfuer

θ

$$
\text { Let } x=\text { ore number }
$$ $x-y=18$

$$
\begin{array}{ll}
\text { 1) isolate } y: & \quad \begin{aligned}
x-y & =18 \\
-x & \\
& \frac{-y}{-1}
\end{aligned}=\frac{-x-x}{-7}
\end{array}
$$

0

$$
\begin{array}{rlrl}
\text { Product } & =x(x-18) \quad \text { Na, we to form } \\
P & =x^{2}-18 x, \text { it in veto } \\
& =\left(x^{2}-18 x+81-81\right) & \begin{aligned}
&\left(\frac{b}{2}\right)^{2}=\left(\frac{18}{2}\right)^{2} \\
&=(-9)^{2} \\
&
\end{aligned} & =81
\end{array}
$$

$$
=\left(x^{2}-18 x+81\right)-81
$$

What are the numbers?

$$
V=(9,-81)
$$

$$
\begin{aligned}
& x=9 \\
& y=x-18 \\
& y=9-18 \\
& y=-9
\end{aligned}
$$

Page 343, \#5
rM,
US
US
5. The sum of the length width of a rectangle is 20 cm .
let $l=$ length

$$
\begin{gather*}
l+\omega=20 \\
l=20-\omega \\
A=l \omega \\
A=(20-\omega)(\omega) \tag{/}
\end{gather*}
$$

$A=20 \omega-\omega^{2}$

$A=-\omega^{2}+20 \omega$

$$
\begin{align*}
A=-i\left(\omega^{2}-20 \omega+100-100\right) & =(-10)^{2} \tag{20}\\
& =100
\end{align*}
$$

with

$$
A=-1\left(\omega^{2}-20 \omega+100\right)+100
$$

$$
\begin{aligned}
& l=20-\omega \\
& l-20-10
\end{aligned}
$$

$$
l=20-10
$$

$$
\begin{gathered}
\text { Dimesim: } \\
l=10 \mathrm{~cm} \\
\omega=10 \mathrm{~cm}
\end{gathered}
$$

$$
\begin{aligned}
& \text { messing: } \\
& l=10 \mathrm{~cm} \\
& \omega=10 \mathrm{~cm}
\end{aligned}
$$

$$
l=10
$$

$$
\begin{gathered}
\omega=10 \mathrm{~cm} \\
\text { Maximum ane }=100 \mathrm{~cm}^{2}
\end{gathered}
$$

Ty $p^{344,47}$

7. A rectangular rime is to be bounded by 120 m of fencing.

$$
\frac{2 w+2 l=120}{2}
$$

$$
\text { Area }=l w
$$

$$
A=(60-\omega)(\omega)
$$

$$
A=60 \omega-\omega^{2}
$$

$$
A=-\omega^{2}+60 \omega \quad \text { Now, change } \phi
$$

$$
\begin{aligned}
& A=-\omega^{2}+60 \omega \quad \text { Now, change } \\
& A=-\left(\omega^{2}-60 \omega+900-900\right) \text { vertex form. }\left(\frac{60}{2}\right)^{2}=(-30)^{2}
\end{aligned}
$$

$$
A=-\left(\omega^{2}-60 \omega+900\right)+900 \quad=900
$$

$$
A=-(\omega-30)^{2}+900
$$

$$
\begin{aligned}
& \text { and the two nurfbers. }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
x y=\text { product } & y=-18+x \\
(x-18)=\text { product } & \text { or } y=x-18
\end{array}
\end{aligned}
$$

Page 341, Example 2 (Revenue Problem)

Example 2 Modelling a Problem for Maximizing Profit
A student parking pass costs base
A

$$
\text { Revenue }=(\text { price })\binom{\text { number }}{\text { sold }}
$$

purchase passes.

$$
R=p^{n}
$$

a) What is the price of a parking pu is
b) What is the maximum revenue?
price $=20+5 x \quad x=$ the number of increase \quad in price
number sold $=150-20 x$

$$
\left.\begin{array}{rl}
R= & (p)(n) \\
R= & (20+5 x)(150-20 x) \tag{b}\\
R= & 3000-400 x+750 x-100 x^{2} \\
R= & -100 x^{2}+350 x+3000 \\
R= & -100\left(x^{2}-3.5 x+3.0625-30025\right)+3000 \\
R= & -100\left(x^{2}-3.5 x+3.0625\right)+306.25+3000 \\
R= & -100(x-1.75)^{2}+3306.25 \\
R=3.0025
\end{array}\right] \begin{aligned}
2
\end{aligned}
$$

For next class

Finish worktext questions for 4.1, 4.3-4.7
Complete the Chapter 4 Hand-in, \#1-10 only, due next class
Prepare for the Chapter 4 Test, next class Test will cover 4.1, 4.3-4.7 only
Make sure you know how to change equations into vertex form

