Tonight's Class:

- Any questions from Chapter 4?
- Chapter 4 Test
- Working through sections 5.1 and 5.2Trig reviewStandard position angles, reference angles, special triangles
p328

$$
\text { 7. } \begin{aligned}
y & =-5 x^{2}+2.5 x+7.5 \\
& =\frac{1}{10} \cdot 10\left(-5 x^{2}+2.5 x+7.5\right) \\
& =\frac{1}{10}\left(-50 x^{2}+25 x+\underline{5}\right) \\
& =\frac{1}{10}(-25)\left(2 x^{2}-x-3\right) \\
& \left.=\frac{-25}{10}(2 x-3) / x+1\right) \\
y & =-\frac{5}{2}(2 x-3) \quad x=-1
\end{aligned}
$$

$$
\text { p334, \#2 } y=\frac{1}{2}(x+3)^{2}-2
$$

Vertex: $(-3,-2)$

$$
x \in \mathbb{R}
$$

range: $\quad y \geq-2$

$$
x=-3
$$

$$
2 \times 2=\frac{\left.\frac{1}{2}(x+3)^{2} \times 2\right)}{1^{2}}
$$

$$
\pm \sqrt{4}=\sqrt{(x+3)^{2}}
$$

$$
\pm 2=x+3
$$

$$
\begin{array}{r}
x+3=2 \\
x=-1 \\
(-1,0)
\end{array}
$$

$$
\begin{array}{r}
x+3=-2 \\
x=-5 \\
(-5,0)
\end{array}
$$

$$
p 343
$$

$$
\begin{aligned}
x & =\text { one number } \\
x-6 & =\text { other number }
\end{aligned}
$$

product $=x(x-6)$

$$
\begin{aligned}
& \text { product }=x(x-6) \quad \text { find mimimin } \\
& =x^{2}-6 x \\
& \begin{array}{ll}
\left(\frac{b}{2}\right)^{2} & =x^{2}-6 x+9-9 \\
=\left(\frac{-6}{2}\right)^{2}=9 & =(x-3)^{2}-9
\end{array} \\
& V=(3,-9) \\
& x=3 \\
& x-6=3-6=-3 \\
& 3 x-3 \\
& -9 * \text { miniminnt }
\end{aligned}
$$

5.1 Trigonometry Review, Standard Position Angles in Quadrant 1

Focus: Relate primary trigonometric ratios to angles in standard position

Review

The correct way to label a triangle is as follows:

- Capital letter are used at the corners to identify the angles in the triangle
- Lower-case letters are used to identify the side that is opposite the angle

Sum of Angles in a Triangle

$$
\angle A+\angle B+\angle C=180^{\circ}
$$

The sum of the angles in a triangle is always 180°

Pythagorean Theorem

$a^{2}+b^{2}=c^{2}$
$(\text { side })^{2}+(\text { side })^{2}=(\text { hyp })^{2}$

Trigonometry is used to determine the ratios between sides and angles in a triangle. These ratios can be converted into sinusoidal waves that repeat. They model what happens in nature, for instance:

- the depth of water due to tides
- the behavior of sound and light waves

We'll use trigonometric ratios to find the size of angles, lengths of sides of triangles, and to solve application problems related to triangles.

ACCESS -Trig Intro

$\underline{\text { Trig Ratios }}$

What are the values of the trigonometric ratios for the marked angle, in each triangle?

$$
\begin{aligned}
& \begin{array}{c}
(\text { side })^{2}+(\text { side })^{2} \\
x^{2}+12^{2} \\
x^{2} \\
x^{2}
\end{array}\left|\begin{array}{l}
\text { form } \\
\text { or } \\
\text { exact form }
\end{array}\right| \\
& \begin{array}{l}
x^{2}=169-144 \\
x^{2}=25, \quad x=5 \quad x=\sqrt{13^{2}-12^{2}}
\end{array} \\
& \text { 1. Determine the indicated trigonometric ratios for } \triangle E F G \text {. } \\
& \text { a) } \sin E=\frac{0}{H}=\frac{16}{20}=\frac{4}{5} \\
& \text { d) } \sin G=\frac{D}{H}=\frac{12}{20}=\frac{3}{5} \\
& \text { b) } \cos E= \\
& \text { e) } \cos \mathrm{G}= \\
& \text { c) } \tan \mathrm{E}= \\
& \text { f) } \tan G= \\
& \tan \theta=\frac{0}{A} \\
& =\frac{3}{6} \\
& =\frac{1}{2} \\
& \sin \theta=\frac{0}{H}=\frac{3}{3 \sqrt{5}} \quad \cos \theta=\frac{A}{H} \\
& =\frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} \\
& =\frac{6}{3 \sqrt{5}} \\
& =\frac{\sqrt{5}}{5} \\
& =\frac{2}{\sqrt{5}}
\end{aligned}
$$

Standard Position Angles

Standard Position Angle Initial arm, terminal arm, angle 'theta'

Draw each of the following angles in standard position AND find each one's reference angle.

$$
\begin{gathered}
\left(570^{\circ}-360^{\circ}\right. \\
\left.=210^{\circ}\right)
\end{gathered}
$$

Step 1: Plot the point (x, y)

Step 2: Find the value of r

$$
r=\sqrt{x^{2}+y^{2}}
$$

Step 3: Write the trig ratios

$$
\begin{aligned}
& \sin \theta=\frac{y}{r} \\
& \cos \theta=\frac{x}{r} \\
& \tan \theta=\frac{y}{x}
\end{aligned}
$$

b) Determine th primary trigonometric ratio of θ.
c) Determine the measure of θ to the nearest degree.

- connect Strait down
to the x-xis, from you point
a)

$$
\begin{array}{rl|l}
4^{2}+7^{2} & =r^{2} & b) \sin \theta=\frac{0}{H}=\frac{7}{\sqrt{65}} \\
\sqrt{4^{2}+7^{2}} & =r & \cos \theta=\frac{A}{H}=\frac{4}{\sqrt{65}} \\
\sqrt{16+49} & =r & \\
\sqrt{65} & =r & \tan \theta=\frac{0}{A}=\frac{7}{4}
\end{array}
$$

c) $\tan ^{-1}(\tan \theta)=\left(\frac{7}{4}\right)$

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{7}{4}\right) \\
& \theta=60^{\circ}
\end{aligned}
$$

Page 406, "Check your understanding" ; page 409, \#3, 4

Special Triangles and Exact Values of the Trig Ratios

$$
\begin{array}{ll}
\sin 45^{\circ}=\frac{D}{H}=\frac{1}{\sqrt{2}} & \sin 30^{\circ}=\frac{O}{H}=\frac{1}{2} \\
\cos 45^{\circ}=\frac{A}{H}=\frac{1}{\sqrt{2}} & \cos 30^{\circ}=\frac{A}{H}=\frac{\sqrt{3}}{2} \\
\tan 45^{\circ}=\frac{O}{A}=\frac{1}{1}=1 & \tan 30^{\circ}=\frac{O}{A}=\frac{1}{\sqrt{3}} \\
& \sin 60^{\circ}=\frac{\sqrt{3}}{2} \\
& \cos 60^{\circ}=\frac{1}{2} \\
& \tan 60^{\circ}=\frac{\sqrt{3}}{1}=\sqrt{3}
\end{array}
$$

$$
\begin{aligned}
1^{2}+1^{2} & =(h y p)^{2} \\
1+1 & =(h y p)^{2} \\
2 & =(h y p)^{2} \\
\sqrt{2} & =h g p
\end{aligned}
$$

