Tonight's Class

- Chapter 5 Test return
- 6.3 Proving Identities (continued)
- Solving Trig Equations Using Identities
- Unit 2 Test - Tuesday, November 1

On your small whiteboard
write two things from Chapter 5 you plan to strengthen, before the Unit 2 Test.

What can help us get more comfortable with math questions?

Do more of them
Sleep on it

> Pre-Calc 12 - Unit 2 Page 49

1. $(\sin x+\cos x)^{2}$
$1+2 \sin x \cos x$
$=(\sin x+\cos x)(\sin x+\cos x)$
$=\sin ^{2} x+\sin x \cos x+\underline{\cos x \sin x}+\cos ^{2} x$
$=2 \sin x \cos x+\sin ^{2} x+\cos ^{2} x$
$=2 \sin x \cos x+1$
$=1+2 \sin x \cos x$
2. $\underbrace{\tan ^{2} x \sin ^{2} x}-\underbrace{\tan ^{2} x}$
$=\tan ^{2} x\left(\sin ^{2} x-1\right)$
$-\sin ^{2} x$
age 49
$=\tan ^{2} x\left(-\cos ^{2} x\right)$
$=\left(\frac{\sin ^{2} x}{\cos ^{2} x}\right) \frac{\left(-\cos ^{2} x\right)}{1}$

$$
=-\sin ^{2} x
$$

3. $\sec ^{4} x$

$$
\begin{gathered}
\tan ^{4} x+2 \tan ^{2} x+1 \\
\left(\tan ^{2} x+1\right)\left(\tan ^{2} x+1\right) \\
\left(\sec ^{2} x\right)\left(\sec ^{2} x\right) \\
\sec ^{4} x
\end{gathered}
$$

4. $\overbrace{(3-3 \sin x)(3+3 \sin x)}^{7}$
$9+9 \sin x-9 \sin x-9 \sin ^{2} x$

$$
\begin{aligned}
& 9-9 \sin ^{2} x \\
& 9\left(1-\sin ^{2} x\right) \\
& 9 \cos ^{2} x \\
& \sin ^{2} \theta+\cos ^{2} \theta=1
\end{aligned}
$$

TB, page 311

Your Turn
Prove that $\frac{\sin 2 x}{\cos 2 x+1}=\tan x$ is an identity for all permissible values of x.

$$
\left.\begin{gathered}
\frac{2 \sin x \cos x}{2 \cos ^{2} x-x+y} \\
\frac{2 \sin x \cos x}{2 \cos ^{2} x} \\
\frac{\sin x}{\cos x}
\end{gathered} \right\rvert\, \frac{\sin x}{\cos x}
$$

Remember how we get common denominators when we add or subtract fractions:

$$
\begin{aligned}
& \frac{4}{4} \cdot \frac{2}{5}+\frac{3}{4} \cdot \frac{5}{5} \\
= & \frac{8}{20}+\frac{15}{20}=\frac{8+15}{20} \\
= & \frac{23}{20}
\end{aligned}
$$

We use the same method to simplify identities that are rational expressions. This is often helpful when we try to prove an identity.

$$
\begin{aligned}
& \begin{array}{r}
\text { Pre-Calc } 12 \text { - Unit } 2 \\
\text { Page } 50
\end{array} \\
& \text { 5. } \frac{1}{1+\cos x}+\frac{1}{1-\cos x} \\
& \frac{(1-\cos x)}{(1-\cos x)} \cdot \frac{1}{1+\cos x}+\frac{1}{1-\cos x} \cdot \frac{(1+\cos x)}{(1+\cos x)} \\
& \frac{1-\cos x}{(1-\cos x)(1+\cos x)}+\frac{1+\cos x}{(1-\cos x)(1+\cos x)} \\
& \frac{1-\cos x+1+\cos x}{(1-\cos x)(1+\cos x)} \\
& \frac{\frac{2}{(-\cos x)(1+\cos x)}}{\frac{2}{1+\cos x-\cos x-\cos ^{2} x}} \\
& \frac{2}{1-\cos ^{2} x} \\
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \sin ^{2} \theta=1-\cos ^{2} \theta \\
& \frac{2}{\sin ^{2} x} \\
& \text { 2. } \frac{1}{\sin ^{2} x} \\
& 2 \csc ^{2} x
\end{aligned}
$$

What is a conjugate? How does multiplying by it help?

- The conjugate of a binomial looks exactly like the binomial, except that the sign between the two terms is OPPOSITE from what it is in the original binomial
example:
$2 x-7$
and
$2 x+7$
- When we multiply an expression, top \& bottom, by the conjugate of the binomial that is in the numerator or denominator, we are really multiplying by 1.
- The resulting expression can be written in a different form, by using a Pythagorean Identity.

8. $\frac{\sin x}{1+\cos x}$
$1-\cos x$

$$
\begin{aligned}
& \frac{\sin x}{1+\cos x} \cdot \frac{1-\cos x}{1-\cos x} \\
& \frac{\sin x(1-\cos x)}{(1+\cos x)(1-\cos x)} \\
& \frac{\sin x(1-\cos x)}{1-\cos x+\cos x-\cos ^{2} x} \\
& \frac{\sin x\left(1-\cos ^{2} x\right)}{1-\cos ^{2} x}
\end{aligned}
$$

$$
\sin x(1-\cos x)
$$

$$
\sin ^{2} x
$$

$$
1-\cos x
$$

$$
\begin{aligned}
& \sin ^{2} x \\
& \frac{1-\cos x}{\sin x}
\end{aligned}
$$

7. $2 \sec x$ =

$$
=\quad \frac{\cos x}{1+\sin x}+\frac{1+\sin x}{\cos x}
$$

$$
\frac{\cos x}{\cos x} \frac{(\cos x)}{(1+\sin x)}+\frac{(1+\sin x) \cdot \frac{(1+\sin x)}{(1+\sin x)}}{\cos x}
$$

$$
\frac{\cos ^{2} x}{\cos x(1+\sin x)}+\frac{1+\sin x+\sin x+\sin ^{2} x}{\cos x(1+\sin x)}
$$

$$
\begin{aligned}
& \frac{8}{20}+\frac{15}{20} \\
& \frac{8+15}{20}
\end{aligned}
$$

$$
\begin{gathered}
\cos ^{2} x+1+2 \sin x+\sin \\
\cos x(1+\sin x) \\
\frac{1+1+2 \sin x}{\cos x(1+\sin x)}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{2+2 \sin x}{\cos x(1+\sin x)} \\
& \frac{2(1+\sin x)}{\cos x(x+\sin x)} \\
& \frac{2}{\cos x} \\
& \frac{1}{\cos x} \\
& 2 \sec x
\end{aligned}
$$

Practice
(6.3) TB p 314: 2, 3ac, 5, 7, 10c, 11a, 12a, 15b, 18
6.4 Solving Trigonometric Equations Using Identities

Some trigonometric equations cannot be solved until they are re-written in a different form, using trigonometric identities.

Example
Algebraically solve this equation, giving the general solution, in radian measure.
Use an identity
to change how the equation looks.

Eliminate
Alimentations:- $2 \sin ^{2} x=9 \sin x-4$
Favor $\begin{aligned} & 2 \sin ^{2} x-9 \sin x+4=0 \\ & 2 \sin ^{2} x-8 \sin x-1 \sin x+4=0\end{aligned}$

$$
\begin{aligned}
& 2 \sin x-8 \sin x-4)-1(\sin x-4)=0 \\
& 2 \sin x(\sin x-4)-\sin x-1)=0
\end{aligned}
$$

$$
\begin{aligned}
& 2 \sin x(\sin x \\
& (\sin x-4)(2 \sin x-1)=0
\end{aligned}
$$

Example
Algebraically solve this equation
$\cos 2 x+\cos x=-1$, for $0^{\circ} \leq x<360^{\circ}$
$2 \cos ^{2} x-1+\cos x=-1$
$2 \cos ^{2} x-1+\cos x+x=0$
$2 \cos ^{2} x+\cos x=0$

(6.4) TB p 320: 1bc, 2bc, 3abc, 4, 5, 10, 14

Work on these:

Chapter 6 hand-in
Unit 2 Review (posted online)

Chapter 6 Hand-in - due Tuesday, November 1

Unit 2 Test (Chapters 4, 5, 6) Tuesday, November 1
My plan for that class is to briefly talk about 7.1, then use the rest of the class for the Unit 2 Test. When finished the test, you will be free to leave.

Around 40 marks on this test, about 15-20 multiple-choice questions and the rest from written.

Know how to:

- Convert between degree and radian measure
- Graph angles in standard position
- Determine coterminal angles and reference angles
- Solve problems involving arc length
- Use trigonometric ratios with exact triangles
- Use the unit circle
- Solve trigonometric equations
- Graph the sine and cosine functions
- Perform transformations on sinusoidal functions
- Model real situations with sinusoidal functions
- Verify trigonometric identities
- Explore equations using Pythagorean identities
- Apply Sum and Difference identities to expressions
- Prove identitie
- Use identities to help solve trigonometric equations

Things you can do to prepare

- Worksheet: Unit 2 Review Questions
- Extra Practice 6.1, 6.2
- Extra Practice 6.3, 6.4
- Textbook practice questions from this unit
- Unit 2 review from the textbook (pages 326-329)

