Tonight's Class:

- Warm-up at whiteboards - Chapter 7 Review. Skip \#3b
- 8.1 Understanding Logarithms (continued)
- 8.2 Transforming Log Graph

Pre-Calc 12 - Unit 3
Page 9
Notation

\log base 10 is called COMMON $\log \quad \log$ base e is called NATURAL \log

 $\log _{10} x$ is written $\log x$ $\log _{e} x$ is written $\ln x$The number e is a very important irrational number. Its decimal expansion starts out: $e \approx 2.7182818284590452353602874713 \ldots$

Changing Form

Exponents and logarithms are closely connected. Look at these two equations:

$$
\begin{gathered}
\log _{4} 64=3 \\
\text { logarithmic form } \\
\text { Byode lose }
\end{gathered} \quad \text { and } \quad 4^{3}=64
$$

Both equations show the relationship between the numbers 4,3 and 64 . We need to know how to change equations from one form to the other, as in some questions one form is better than the other

To Try

1. Change form.

$\log _{6} 36=2$
$\log _{2} 1 / 4$
$\log _{7} 7$

$2^{\square}=-1 / 4$
$\frac{1}{2^{2}}=2^{-2}=1 / 4$

c) $\log 8=$

$$
\xrightarrow{\text { d) } \ln x=2}
$$

$e^{2}=x$

$$
x \doteq 7.39
$$

(using calculctar)
e) $\log _{2}\left(\log _{0} x\right)=-1 \quad$ f) $4^{\operatorname{loset}^{7}}=x$

$$
2^{-1}=\log _{9} x
$$

$$
\log _{4} x=\log _{4} 7
$$

$$
\frac{1}{2}=\log _{9} x
$$

$$
\Rightarrow x=7
$$

$$
9^{1 / 2}=x, \quad x=\sqrt{9}, \quad x=3
$$

Try solving these

Try to evaluate these logs:
a) $\log _{x} 27=3$
a) $\log _{2} 64=x$

$$
\begin{gathered}
\left(x^{3}\right)^{1 / 3}=(27)^{1 / 3} \\
x=(27)^{1 / 3} \\
x=3
\end{gathered}
$$

$$
2^{x}=64
$$

b) $\log _{4} 0.0625=x$

$$
\log _{x} a=c
$$

$$
4^{x}=0.0625
$$

b) $\log _{2}(2 x-5)=4$

$$
2^{4}=2 x-5
$$

$$
\begin{aligned}
4^{x} & =4^{-2} \\
\Rightarrow x & =-2
\end{aligned}
$$

$$
\text { argument }>0
$$

$$
\begin{aligned}
& 16=2 x-5 \\
& +5=2 x+\frac{21}{2}
\end{aligned}
$$

$$
\text { c) } \log _{1} 32=x \quad\left(\frac{1}{2}\right)^{x}=32
$$

$\frac{21}{2}=\frac{2 x}{2} \quad x-\frac{21}{2} \quad \underset{(21}{1} \quad$ arsumat c) $\frac{\frac{21}{2}}{\log _{(x+1)}}(2 x-1)=2$ cleck thet it's oken: $\frac{2\left(\frac{21}{2}\right)-5}{2}=21-5=16$ This is >0,

$$
\begin{aligned}
& (x+1)^{2}=2 x-1 \\
& (x+1)(x+1)=2 x-1 \\
& x^{2}+1 x+1 x+1-2 x+1=0
\end{aligned}
$$

$$
\begin{aligned}
& (x+1)(x+1)=2 x-1 \\
& x^{2}+1 x+1 x+1-2 x+1=0 \\
& x^{2}+2 x+1-2 x+1=0 \\
& x^{2}+2=0 \quad \text { no solution } \\
& x^{2}=-2 \quad \Rightarrow \text { Enothin! }
\end{aligned}
$$

$$
\int^{2 v} \log _{1.2} 223.87
$$

When we solve a logarithmic equation, we must make sure that the answer is okay.

- We substitute the x-value into the argument.
- If it makes the argument 0 or negative, we must REJECT that answer.

Answers that don't obey restrictions are called "extraneous roots"

DONE in yesterday's class

$$
\begin{array}{r}
\text { Pre-Cale } 12 \text { - Unit } 3 \\
\text { Page } 10
\end{array}
$$

Graphing an Exponential Function and its Inverse
a) Fill in the table below, and sketch the graph of the exponential function, $y=2^{x}$

x	y

b) Identify the following:
domain
range
asymptote equation
x-intercept, if it exists

y-intercept, if it exists
c) Give the equation of the inverse of: $y=2^{x}$. Inverse's equation is: \qquad
d) For the equation of the inverse that you found in part c), complete the table at right and sketch the graph on the grid above.
e) For the inverse graph, what are its:
domain
range
asymptote equation
x-intercept, if it exists
y-intercept, if it exists
f) Rewrite the inverse equation from part c) in logarithmic form:

Conclusions:

$$
\log _{a}\left(a^{x}\right)=\quad a^{\log _{a} x}=
$$

8.2 Transformations of Logarithmic Function

The graphs of logarithmic functions can be grouped into two categories

- if the logarithm's base is larger than one, the graph is increasing
- if the logarithm's base is between zero and one, the graph is decreasing

What characteristics are the same for all untransformed logarithmic graphs
domain $\{x \mid x>0, x \in \mathbb{R}\} \quad$ x-intercept $(1,0)$
range $\{y \mid y \in \mathbb{R}\} \quad \begin{gathered}\text { asymptote (and its equation) } x=0 \\ \text { on the } y \text {-axis }\end{gathered}$
Predict what will happen to the graph of $y=\log _{3} x$ when each of the following changes is
made to the equation:
$y=\log _{3}(x)^{-5} \quad$ down 5
$y=-4 \log _{3} x$ YE by $-4 / V E$ by 4 , and reflected across the x-axis
$y=\log _{3}\left(-\frac{2}{5}(x+3)\right) \underbrace{\text { reflect across } y \text {-axis, } H E \text { by } \frac{5}{2}}, 3$ left HE by $-\frac{5}{2}$

Horizontal stretch by af actor of $\frac{1}{b}$

$$
y=a \log _{c} b(x-h)+k^{2}
$$

If $b<0$ then there is a reflection over the y-axis (horizontal reflection)
If $a<0$ then there is a reflection over the x-axis (vertical reflection)

When a log equation is transformed, here's the an easy way to find its domain and vertical asymptote equation:

To find the domain of a logarithmic graph

- Set the ARGUMENT > 0 , and isolate x

The vertical asymptote equation is in the form $\mathrm{x}=\mathrm{c}$, where " c " is the number that appears in the domain.

Example
Without graphing, find the following characteristics for this equation's graph.

$$
0=\log _{4}(-2 x+16)-3
$$

$(-24,0)$

$$
3=\log _{4}(-2 x+16)
$$

$$
4^{3}=-2 x+16
$$

$$
\begin{array}{rl}
(-24,0) & =\log _{4}(-2 x+16) \\
4^{3} & =-2 x+16 \\
64 & =-2 x+16 \\
\frac{48}{-2} & =\frac{-2 x}{2} \quad x=-24 \\
y-\sin , \text { let } x=0 & y
\end{array}
$$

Graph:

1) similar to $y=\log _{4} x$
$y=\log _{4}(-2 x+16)-3$

$y=4^{x}$	$y=\log _{4} x$		
x	y		
-1	$4^{-1}=1 / 4$	x	y
0	$4^{0}=1$	$1 / 4$	-1
1	$4^{1}=4$	1	0
2	$4^{2}=16$	16	1

2) make table for its muse,

$$
y=4^{x}
$$

3) figure out the mapping
$y=\log _{4}(-2(x-8))-3$
$(x, y) \rightarrow(-12 x+8, y-3)$
$y=\log _{4}(-2 x+16)-3$
4) Perform the mapping on the

$-1 / 2 x+8$	$y-3$
$(-1 / 2)(1 / 4)+8$	$-1-3$
$=-1 / 8+8$	$=-4$
$=\frac{63}{8}=7^{7 / 8}$	
$(-1 / 2)(1)+8$	-3
$-1 / 2+8$	$7^{1 / 2}$

BASE table point:.

WB Log Transformations

Your Turn

a) Use transformations to sketch the graph of the function $y=2 \log _{3}(-x+1)$. FACTOR $y=2 \log _{3}(-1(x-1))$
b) Identify the following characteristics. i) the equation of the asymptote iii) the y-intercept, if it exists

$$
y=2 \log _{3}(-x+1)
$$

Base function

$$
y=\log _{3} x
$$

Exponential
function it's related to:

Base function:

$$
y=\log _{3} x
$$

$$
y=3^{x}
$$

x	y	x	y
-1	$1 / 3$	$1 / 3$	-1
0	1	1	0
1	3	3	1
2	9	9	2

$$
\begin{array}{r}
y=2 \log _{3}(-x+1) \quad \text { Base function } \\
y=\log _{3} x
\end{array}
$$

1	3	3	1
2	9	9	2

mapping

$$
(x, y) \rightarrow(-x+1,2 y)
$$

$-x+1$	$2 y$
$-1 / 3+1 \cdot 3 / 3$ $2 / 3$	$2(-1)$ $=-2$
$-1+1$	$2(0)$ $=0$
$-3+1$	$2(1)$
$=-2$	$=2$
$-9+1$	$2(2)$ $=-8$

y-int, let $x=0$

$$
\begin{aligned}
y & =2 \log _{3}(-0+1) \\
& =2 \log _{3}(1) \\
& =2(0) \\
& =0
\end{aligned}
$$

For each of the following find:

$$
\begin{aligned}
& x \text {-int, let } y=0 \\
& \frac{0}{2}=\frac{2}{2} \log _{3}(x+1) \\
& 0=\log _{3}(x+1) \quad(0,0) \\
& 3^{0}=x+1 \quad \\
& 1=x+1
\end{aligned}
$$

Domain
Range
Asymptote equation
x-intercept
y-intercept

1. $y=\log _{2}(x-7)-5$
domain $\quad x-7>0$

$$
\begin{array}{r}
-7>0 \\
x>7
\end{array} \quad\{x \mid x>7, x \in \mathbb{R}\}
$$

range: $\{y \mid y \in \mathbb{R}\}$

$$
\begin{aligned}
& \text { asymptote } x=7 \\
& x-1 \text { nt } \quad 0=\log _{2}(x-7)-5 \\
& 5=\log _{2}(x-7) \\
& 2^{5}=x-7 \\
&(39,0)=x-7 \\
& 32=x
\end{aligned}
$$

2. $y=\log _{3}(5 x+3)-4$

$$
\left\{x \left\lvert\, x>\frac{-3}{5}\right., x \in \mathbb{R}\right\}
$$

range $\{y \mid y \in \mathbb{R}\}$
$y-\ln t$
asymptote $x=-\frac{3}{5}$

$$
y=\log _{2}(0-7)-5
$$

$$
y=\log _{2}(-7)-5
$$

$$
\begin{aligned}
& \text { no y-int }
\end{aligned}
$$

$$
\begin{aligned}
& x-\operatorname{lnt}, \operatorname{let} y=0 \\
& 0=\log _{3}(5 x+3)-4 \\
& 4=\log _{3}(5 x+3) \\
& 3^{4}=5 x+3 \\
& 81=5 x+3
\end{aligned}
$$

$$
\frac{78}{5}=\frac{5 x}{5} \quad x=\frac{78}{5}
$$

y-int, let $x=0$

$$
\begin{aligned}
& y=\log _{3}(5(0)+3)-4 \\
& y=\log _{3}(3)-4 \\
& y=1-4 \\
& y=-3
\end{aligned}
$$

$$
(0,-3)
$$

