Tonight's Class:

- Unit 2 Test return and rewrite sign-up
- Warm-up
- Working through sections 5.2, 5.3, 5.5
- Trig Ratios in All Quadrants (continued)
- Coterminal Angles (5.3)
- Sine Law (5.5)

Warm-up

The point $(-2,7)$ is on the terminal arm of a standard position angle, θ Determine the values of the three primary trig ratios for θ.

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
(-2)^{2}+(7)^{2} & =r^{2} \\
4+49 & =r^{2} \\
53 & =r^{2}, \quad r= \pm \sqrt{53}
\end{aligned}
$$

$$
\sin \theta=\frac{y}{r}=\frac{7}{\sqrt{53}} \quad \cos \theta=\frac{x}{r}=\frac{-2}{\sqrt{53}}
$$

$$
\begin{aligned}
\tan \theta & =\frac{y}{x} \\
& =\frac{7}{-2}
\end{aligned}
$$

Page 425

Example 4
 Determining Trigonometric Ratios Given

 Information about an Anglea) Given that $\tan \alpha=\frac{5}{12}$, determine the exact values of the other primary trigonometric ratios of the angle α. all of them!
b) To the nearest degree, determine the possible values for α when $0^{\circ} \leq \alpha \leq 360^{-}$.

Where is tangent positive?

$$
\begin{aligned}
& \tan \alpha=\frac{5^{2}}{12}-x(\text { (ops) }) \\
& \frac{5}{12} \text { is positive. } \\
& x^{2}+y^{2}=r^{2} \\
& (12)^{2}+(5)^{2}=r^{2} \\
& 144+25=r^{2} \\
& 169=r^{2} \\
& \begin{aligned}
\sqrt{169} & =r \\
r & =13
\end{aligned}
\end{aligned}
$$

Where is tangent positive:

b) What is α ?

Examples using special triangles
If $\sin \theta=\frac{1}{2}$, find the exact values of the other trigonometric ratios.
Find the values of θ that satisfy the equation, for $0^{\circ} \leq \theta \leq 360^{\circ}$.

1) Where con this happen?

$$
\sin \theta=+\frac{1}{2} \leftarrow r
$$

$$
Q 1, Q 2
$$

2)

$$
\begin{aligned}
& \cos \theta=\frac{x}{r}=\frac{\sqrt{3}}{2} \\
& \tan \theta=\frac{y}{x}=\frac{1}{\sqrt{3}} \\
& \cos \theta=-\frac{\sqrt{3}}{2} \\
& \tan \theta=-\frac{1}{\sqrt{3}}
\end{aligned}
$$

3) Find angles:

$$
\sin \theta=\frac{1}{2}
$$

We con get θ, without having to use the calculator.

$$
\begin{aligned}
& Q_{1}: \theta=30^{\circ} \\
& Q_{2}: 180^{\circ}-30^{\circ}=150^{\circ}
\end{aligned}
$$

If $\cos \theta=-\frac{1}{2}$, find the exact values of the other trigonometric ratios.
Find the values of θ that satisfy the equation, for $0^{\circ} \leq \theta \leq 360^{\circ}$.

Find the values of θ that satisfy the equation, for $0^{\circ} \leq \theta \leq 360^{\circ}$.

1) $\cos \theta=-\frac{1}{2}$
\Rightarrow Quadrants 2, 3

(2) S	A (1)
(3) T	C (4)

2)

$$
\begin{array}{rlrl}
\sin \theta & =\frac{y}{r} & \tan \theta & =\frac{y}{x} \\
& =\frac{\sqrt{3}}{2} & & =\frac{\sqrt{3}}{-1} \\
& = & -\sqrt{3}
\end{array}
$$

Quodert 3:

$$
\begin{aligned}
\sin \theta & =\frac{y}{r} \\
& =\frac{-\sqrt{3}}{2}
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =\frac{y}{x} \\
& =\frac{-\sqrt{3}}{-1} \\
& =\sqrt{3}
\end{aligned}
$$

3) $\theta_{R}=60^{\circ}$

$$
\begin{aligned}
& \cos \theta=-\frac{1}{2} \\
& \theta_{R}=\cos ^{-1}\left(+\frac{1}{2}\right)=60^{\circ}
\end{aligned}
$$

$$
\theta=180^{\circ}-60^{\circ}=120^{\circ}
$$

WT, page 433: \#14hi, \#15df, 16, 19
5.3 Coterminal Angles

Focus: Find trigonometric ratios for angles smaller than 0 degrees and greater than 360 degrees.

Coterminal Angles are

- different in size than the original angle but
- have the same terminal arm as the original angle

The collection of all angles coterminal to θ is given by:

380° is a cotermini angle another one:

$$
2 n^{\circ}-360^{\circ}=-340^{\circ}
$$

Coterminal angles to α

WT, page 440

Example 1

Identifying and Sketching Coterminal

 Anglesa) Determine the measures of all the angles in standard position from 0° to 1500° that are coterminal with an angle of 120° in standard position. Sketch the angles.
b) Write an expression for the measures of all angles that are
coterminal with an angle of 120° in standard position.

WT, page 441

Example 2
a) Determine the principal angle for -908°
b) Use the principal angle to write an expression for the measures of all the angles that are coterminal with -520° in standard position
a) -908°

$$
\begin{array}{ll}
-908^{\circ}+360^{\circ} & =-548^{\circ} \\
-548^{\circ}+360^{\circ} & =-188^{\circ} \\
-188^{\circ}+360^{\circ} & =172^{\circ} \quad \begin{array}{ll}
\text { this is } \\
\text { the pill } \\
\text { princingle. }
\end{array}
\end{array}
$$

b) -520° first, let's find the prinapel angle:

$$
\begin{aligned}
& -520^{\circ}+360^{\circ}=-160^{\circ} \\
& -160^{\circ}+360^{\circ}=200^{\circ} \text { principal } \\
& \text { asst }
\end{aligned}
$$

$$
200^{\circ}+360^{\circ} n, n \in I
$$

WT, page 441

Example 3 Determining Trigonometric Ratios of

 Angles Greater than 360° or Less than 0°a) Determine teexact values f the trigonometric ratios for -840°
b) Determine the approximate values of the trigonometric ratios for -840°. Give the answers to 3 decimal places where necessary.
a) Let's find the principe angle for -840° :

$$
-840^{\circ}+3\left(360^{\circ}\right)=240^{\circ}
$$

$\sin 240^{\circ}=\frac{-\sqrt{3}}{2}$
$\cos 240^{\circ}=-\frac{1}{2}$
We know the refonce

$$
\tan 240^{\circ}=\frac{-\sqrt{3}}{-1}=\frac{\sqrt{3}}{1}=\sqrt{3}
$$

angle is 60°, and
that help us koel
the triangle sides

WT, page 442

Example 4

Determining All Trigonometric Ratios Given Information about an Angle
a) Given that $\tan \alpha=\frac{3}{4}$, determine the exact values of the other primary trigonometric ratios of the angle α.
b) To the nearest degree, determine the possible values of α when
a) $\tan \alpha=\frac{3}{4}$

1) where? Q1, Q 3
2) Q 1: $\sin \alpha=\frac{3}{5}$

$$
\cos \alpha=\frac{4}{5}
$$

$$
\begin{align*}
& x^{2}+y^{2}=r^{2} \\
& 3^{2}+4^{2}=r^{2} \\
& 9+16=r^{2} \tag{7c}
\end{align*}
$$

2)

$$
\begin{aligned}
Q^{\prime} & \\
\cos \alpha & =\frac{4}{5} \\
Q_{3}: \sin \alpha & =-\frac{3}{5} \\
\cos \alpha & =-\frac{4}{5}
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+y^{2}=r^{-} \\
& 3^{2}+4^{2}=r^{2} \\
& 9+16=r^{2} \\
& 25=r^{2}, r=\sqrt{25} \\
& 25=5
\end{aligned}
$$

3)
$\tan \alpha=\frac{3}{4}$
skirt by getting one archer frs
the calculator:

$$
\begin{aligned}
& \text { the calcucter: } \\
& \tan ^{-1}\left(\frac{3}{4}\right)=37^{\circ} \text { Q asher } \\
& \begin{array}{c}
\text { Q3 answer: } \\
\\
\\
=20^{\circ}+37^{\circ} \\
\end{array}
\end{aligned}
$$

4) Get all the coturminds to these two onvuess between

$$
\left.\begin{aligned}
-360^{\circ} & \leq \alpha \leq 720^{\circ} \\
37^{\circ}+360^{\circ} & =397^{\circ} \\
37^{\circ}+2\left(360^{\circ}\right) & =\text { too big } \\
37^{\circ}-360^{\circ} & =-323^{\circ}
\end{aligned} \right\rvert\, \begin{aligned}
& 217^{\circ}+360^{\circ}=577^{\circ} \\
& 217^{\circ}-360^{\circ}=-143^{\circ}
\end{aligned}
$$

5.5 Sine Law

Focus: Apply the Sine Law to solve problems in triangles that are not right triangles.
Solve this triangle

- find all the side length
-find $<l l$ the angles

We know:

$$
\begin{aligned}
a^{2}+14^{2} & =21^{2} \\
a^{2} & =21^{2}-14^{2} \\
a^{2} & =245
\end{aligned}
$$

$$
\begin{aligned}
\text { approximate } \\
\text { answer } \\
a=15.7, \\
\text { to one } \\
\text { decimd }
\end{aligned} \quad \begin{aligned}
& a=\sqrt{245} \\
& a=\sqrt{49.5} \\
& a=7 \sqrt{5} \text { exact } \\
& \text { form }
\end{aligned}
$$

$$
\frac{A=\cos ^{-1}\left(\frac{14}{21}\right)}{A \doteq 48.2^{\circ}}
$$

$$
B=180^{\circ}-90^{\circ}-48.2^{\circ}
$$

$$
B \equiv 41.8^{\circ}
$$

The following figure shows the Law of Sines for the triangle $A B C$
True for any

Law of sines triangle ${ }^{6}$.

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

We can also write the law of sines or sine rule as:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

To use the Sine Law we need to be given

- two angles and one side of the triangle (AAS or ASA)
- two sides and an angle opposite one of them (SSA)

Two Angles and One Side
WT, page 469

Example 1

In $\triangle \mathrm{PQR}$, determine the length of QR to the nearest tenth of a centimetre.

$$
\begin{aligned}
& P=75^{\circ} \\
& R=39^{\circ} \\
& Q=180^{\circ}-75^{\circ}-39^{\circ} \\
& Q=66^{\circ} \\
& q=8.1
\end{aligned}
$$

$$
\begin{aligned}
\sin 75^{\circ}\left(\frac{p}{\sin 75^{\circ}}\right) & =\frac{8.1}{\sin 66^{\circ}} \cdot \sin 75^{\circ} \\
p & =\frac{8.1 \sin 75^{\circ}}{\sin 66^{\circ}} \\
p & \doteq 8.6 \mathrm{~cm}
\end{aligned}
$$

Two Sides and One Angle

Example

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

Solve $\triangle A B C$, given that $A=40^{\circ}, a=15 \mathrm{~cm}, b=30 \mathrm{~cm}$

(we don't try to draw it accurately)

$$
\frac{\sin B}{b}=\frac{\sin A}{a}
$$

$$
36\left(\frac{\sin B}{30}\right)=\left(\frac{\sin 40^{\circ}}{15}\right)^{36}
$$

$$
\begin{aligned}
& 30\left(\sin 40^{\circ}\right)=\frac{h}{30} \cdot 30 \\
& 30\left(\sin 40^{\circ}\right)=h \\
& 19.3=h \\
& \text { This is the shorstiblessibeth. } \\
& \text { The ns }
\end{aligned}
$$

$$
\sin B=\frac{30 \sin 40^{\circ}}{15}
$$

$$
B=\sin ^{-1}\left(\frac{30 \sin 40^{\circ}}{15}\right)
$$

$$
B=\operatorname{error}(?!) \text { Why? }
$$

$$
1.5 \mathrm{~cm} \text { won't reach!! }
$$

$$
\Rightarrow \sqrt{n o \Delta}
$$

When we're given SSA...

AMBIGUOUS
https://youtu.be/BMr4m5AEqIQ?t=69 (time-stamped)

Determining if Triangles Exist - Nerdstudy

The Ambiguous Case for Sine Law - Nerdstudy

How to Solve the Ambiguous Case WITHOUT MEMORIZING Anything (with Visuals)

/amsicuous case

[^0]
Example 2, page 470

Solve $\triangle G H J$, shown in the diagram.

$$
H=65^{\circ}
$$

$$
\begin{aligned}
\frac{\sin J}{j} & =\frac{\sin H}{h} \\
6.1\left(\frac{\sin J}{6.1}\right) & =\left(\frac{\sin 65^{\circ}}{8.6}\right) \cdot 6.1 \\
\sin J & =\frac{6.1 \sin 65^{\circ}}{8.6}
\end{aligned}
$$

1- $-\sigma \mathrm{cm}$

$$
\begin{array}{ll}
H=65^{\circ} & \sin J=\frac{6.1 \sin 65^{\circ}}{8.6} \\
h=8.6 \mathrm{~cm} \\
j=6.1 \mathrm{~cm} & J=\sin ^{-1}\left(\frac{6.1 \sin 65^{\circ}}{8.6}\right) \\
& J=40^{\circ} \\
G=180^{\circ}-65^{\circ}-40^{\circ} \\
& G=75^{\circ}
\end{array}
$$

Solve for g :

$$
\begin{aligned}
\text { for } g: \frac{g}{\sin G} & =\frac{h}{\sin H} \\
\sin 75^{\circ}\left(\frac{g}{\sin 75^{\circ}}\right) & =\left(\frac{8.6}{\sin 65^{\circ}}\right) \sin 75^{\circ} \\
g & =\frac{8.6 \sin 75^{\circ}}{\sin 65^{\circ}} \\
g & \doteq 9.2 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& I=180^{\circ}-40^{\circ} \quad \begin{array}{r}
65^{\circ} \\
+140^{\circ} \\
I=140^{\circ} \\
I
\end{array} \frac{\begin{array}{l}
I \\
I 5^{\circ}
\end{array}}{\begin{array}{l}
I \text { phr possible? }
\end{array}} \begin{array}{l}
\text { Arcady }
\end{array}
\end{aligned}
$$

Already more
thar 180°.
\Rightarrow
This triangle corr^{\prime} be created!

Theses ont । triage.

Example
Solve $\triangle D E F$, given that $D=30^{\circ}, d=10, e=12$

$$
\begin{aligned}
& \frac{\sin E}{e}=\frac{\sin D}{d} \\
& 12\left(\frac{\sin E}{12}\right)=\left(\frac{\sin 30^{\circ}}{10}\right) \cdot 12 \\
& \sin E=\frac{12 \sin 30^{\circ}}{10} \\
& E=\sin ^{-1}\left(\frac{12 \sin 30^{\circ}}{10}\right) \\
& E \doteq 37^{\circ} \\
& F=180^{\circ}-30^{\circ}-37^{\circ} \\
& E=180^{\circ}-37^{\circ} \\
& E=143^{\circ} \\
& D=30^{\circ} \\
& \begin{array}{l}
D=30^{\circ} \\
F=180^{\circ}-143^{\circ}-30^{\circ}
\end{array} \\
& \text { Is there friafe? }
\end{aligned}
$$

$$
\begin{array}{l|l}
F=180^{\circ}-30^{\circ}-37^{\circ} \\
F=113^{\circ}
\end{array}\left|\begin{array}{l}
D=30 \\
F=180^{\circ}-143^{\circ}-30^{\circ} \\
F=7^{\circ}
\end{array}\right| \begin{aligned}
& \frac{f}{\sin 7^{\circ}}=\frac{10}{\sin 30^{\circ}} \\
& f=\frac{r 0 \sin 7^{\circ}}{\sin 30^{\circ}} \\
& \sin 113^{\circ} \\
& f=2.4
\end{aligned}
$$

IN SUMMARY.
I. Find the second angle of the triangle. If it doesn't make sense, then there's no triangle.
2. See if the supplementary angle of that angle can also make a triangle. If so, then there are two triangles. If not, then there's just one triangle.
3. Solve for the rest of the triangle(s) using Law of Sines

For next class

- Work on the worktext questions for chapter 5
- We are omitting section 5.4
- I'll have the Chapter 5 hand-in assignment for you, next class. (It will be due March 28, when we return from spring break.)

[^0]: https://youtu.be/BMr4m5AEqIQ?t=69

