Tonight's Class:

WB - Unit 2 questions/feedback
Returning Unit 2 Test, rewrite sign-up
7.1 Characteristics of Exponential Functions
7.2 Transforming Exponential Functions

Textbook, page 330

Unit 3

Exponential and Logarithmic Functions

Exponential and logarithmic functions can be used to describe and solve a wide range of problems. Some of the questions that can be answered using these two types of functions include:

- How much will your bank deposit be worth in five years, if it is compounded monthly?
- How will your car loan payment change if you pay it off in three years instead of four?
- How acidic is a water sample with a pH of 8.2 ?
- How long will a medication stay in your bloodstream with a concentration that allow it to be elfective?
How thick should the walls of a spacecraft be in order to protect the crew from harmful radiation?

In this unit, you with explore a variety of situations that can modelled with an exponential function or its inverse, the logarithmic function. You will learn techniques for solving various problems, such as those posed above.

Unit 3

In Unit 3 we work with exponential functions, which are functions in this form:

exponential

function

- a function of the form $y=c^{x}$, where c is a constant ($c>0$) and x is a variable

Note:
The base cannot be negative
The base cannot be 0

Quick EXPONENTS Review

$$
\begin{aligned}
& 2^{3}=8=2 \times 2 \times 2 \\
& 2^{2}=4=2 \times 2 \\
& 2^{1}=2=2
\end{aligned}
$$

$$
2^{0}=1
$$

$$
2^{-1}=\frac{1}{2}
$$

$$
2^{-2}=\frac{1}{4}=\frac{1}{2 \times 2}
$$

$$
2^{-3}=\frac{1}{8}=\frac{1}{2 \times 2 \times 2}
$$

$$
2^{-7}=\frac{1}{128}=\frac{1}{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}
$$

$$
\left(\frac{3}{4}\right)^{2}=
$$

Zero Exponent

$(\text { anything })^{0}=1$

Negative Exponents

$(5)^{-3}=\frac{1}{5 \times 5 \times 5}=\frac{1}{5^{3}}$
$\left(\frac{1}{4}\right)^{-2}=\frac{1}{\left(\frac{1}{4}\right) \times\left(\frac{1}{4}\right)}=\frac{1}{\left(\frac{1}{4}\right)^{2}}=\frac{1}{\frac{1}{16}}=1 \div \frac{1}{16}=1 \times \frac{16}{1}=16$

$$
\left(\frac{2}{5}\right)^{-2}=\frac{1}{\left(\frac{2}{5}\right)^{2}}=\frac{1}{\frac{2}{5} \times \frac{2}{5}}=\frac{1}{\frac{4}{25}}=\frac{25}{4}
$$

$$
\left(\frac{2}{5}\right)^{-2}=\left(\frac{5}{2}\right)^{2}=\frac{25}{4}
$$

Fractions to a Negative Exponent - Shorter Method

Take reciprocal of the base and change the exponent to a positive exponent Evaluate.

$$
\left(\frac{5}{8}\right)^{-2}=\left(\frac{8}{5}\right)^{+2}=\frac{64}{25}
$$

Chapter 7: Exponential Functions

7.1 Characteristics of Exponential Functions

An exponential function is a function where the exponent includes a variable, and the base is larger than zero, not equal to 1 . Exponential functions are used to model many real-life situations of change - such as population growth, radioactive decay and compound interest.

For example -
Suppose you greet three people.

Each person you greeted goes on to greet 3 different people.

$$
\begin{aligned}
& y=2^{x} \\
& y=1^{x} \text { not okay } \\
& \frac{x}{-2} \left\lvert\, \frac{y}{1^{-2}}=\frac{1}{1^{2}}=\frac{1}{1}=1\right. \\
& 0 \cdot 1^{0}=1 \\
& \left.3\right|^{3}=1
\end{aligned}
$$

If this pattern continues, you can see that the number of people greeted grows very quickly.
(27)

Consider the function $y=3^{x}$. a) Complete the table, then sketch the graph of $y=3^{x}$ on the grid.

x	y
-3	$3^{-3}=\frac{1}{3^{3}}=\frac{1}{27}$
-2	$3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$
-1	$3^{-1}=\frac{1}{3}$
0	$3^{0}=1$
1	$3^{1}=3$
2	$3^{2}=9$
3	$3^{3}=27$

b) State the graph's:
domain $\quad\{x \mid x \in \mathbb{R}\}$
range $\quad\{y \mid y>0, y \in \mathbb{R}\}$
y-intercept $(0,1)$
x-intercept none
horizontal asymptote equation

$$
y=0
$$

Example 2

Write the Exponential Function Given Its Graph

What function of the form $y=c^{x}$ can be used to describe the graph shown?

$$
\left.\begin{array}{l|l}
x & y \\
\hline-2 & 16 \\
-1 & 4 \\
0 & 1
\end{array}\right\} \begin{gathered}
\text { what arethy-valuy } \\
\text { doing? } \\
\text { divided by } 4 \\
\text { multphy'7 } \\
\qquad y=\left(\frac{1}{4}\right)^{x} \text { or } y=\frac{1}{4}
\end{gathered}
$$

Your Turn

What function of the form $y=c^{x}$ can be used to describe the graph shown?

				y个		4			
			0	0					
					(2, 25)				
					(1,	(1,5)			
			(0,1)	1)					
	-4		20		2	2	4		x
				\downarrow					

Where Can We See Exponential Growth/Decay?
https://studiousguy.com/exponential-growth-examples/
https://studiousguy.com/exponential-decay-examples/

Exponential growth is a pattern of data that shows a sharp increase over time. The graph of exponentially growing data is generally ploted on a logarithmic scolle. There are a number of domains that make use of the concept of exponential growth for research and growth purposes such as biology, finance, mathematics, economies, business, management, ete

Index of Article (Click to Jump)

Examples of Expuoential Growth
t. Spread of Virus
2. Finance
2. Finance Crin

Exponential deany describes the process of reduetion in the magnitude or value of a partiouler
quartity at a cosasistent rate over a period of time. In other words, if a value tends to move towards seror appidly, it is said to be extibiting an exponential decay. The coocept of exponeutial decoy is being utilized by a variety of fields such as finanoc, bidong, chenistry, physics, ecology, archaselogy, ete.

Index of Article (Click to Jump)
Rxamples of Exponential Deceny
2. Radhacthe Deasy
3. Pepulation Dediase
4. TTouthenat of Disam

Example 3

Application of an Exponential Function
A radioactive sample of radium (Ra-225) has a half-life of 15 days. The mass, m, in grams, of Ra- 225 remaining over time, t, in 15-day intervals, can be modelled using the exponential graph shown.
a) What is the initial mass of Ra-225 in the sample? What value does the mass of Ra-225 remaining approach as time passes? At $t=0,1.0 \mathrm{~g}$
b) What are the domain and range of
this function? time $\geq 0 \quad 0<m a s \leq 1$
c) Write the exponential decay model that relates the mass of Ra-225 remaining to time, in 15-day intervals. \int

d) Estimate how many days it would take for Ra-225 to decay to $\frac{1}{30}$ of its original mass.

$$
y=\frac{1}{2}^{x}
$$

TB p 343, \#6

Apply

6. Each of the following situations can be modelled using an exponential function. Indicate which situations require a value of $c>1$ (growth) and which require a value of $0<c<1$ (decay). Explain your choices.
a) Bacteria in a Peri dish double their number every hour.
b) The half-life of the radioactive isotope actinium- 225 is 10 days.
c) As light passes through every 1-m depth of water in a pond, the amount of light available decreases by 20%.
d) The population of an insect colony triples every day.

$$
y=3^{x}
$$

11. Money in a savings account earns compound interest at a rate of 1.75% per year. The amount, A, of money in an account can be modelled by the exponential function $A=P(1.0175)^{\text {n }}$, where P is the amount of money first deposited into the savings account and n is the number of years the money remains in the account.
a) Graph this function using a value of $P=\$ 1$ as the initial deposit.
b) Approximately how long will it take for the deposit to triple in value?
c) Does the amount of time it takes for a deposit to triple depend on the value of the initial deposit? Explain.

湌 =

TB, p 342

Key Ideas

- An exponential function of the form
$y=c^{x}, c>0$,
- is increasing for $C>1$
- is decreasing for $0<c<1$
- is neither increasing nor decreasing
for $\quad C=1$
- has a domain of
- has a range of
$\{x \mid x \in \mathbb{R}\}$
- has a y-intercept of
$\{y \mid y>0 \quad y \in \mathbb{R}\}$

- hasNO x-intercept
- has a horizontal asymptote with equation $y=0$

Textbook Practice
(7.1) p 342: 1, 3-8
7.2 Transformations of Exponential Functions

Predict what will happen to the graph of $y=5^{x}$ when each of the following changes is made to the equation:

If $b<0$ then there is a reflection over the y-axis (horizontal reflection)
If $a<0$ then there is a reflection over thex-axis (vertical reflection)

WB
TB, p 351 - do with a partner. Use small whiteboards as needed.

Transforming Exponential Graphs

Use the graph of $y=4^{x}$ to create the graph of $y=4^{-2(x+5)}-3$.

1. Make a table of key points for the BASE function.

List all the transformations
3. Determine the mapping notation.
4. Make a table showing the final image points.
5. Draw in the horizontal asymptote, using a dotted line.
6. Plot the final image points, being careful not to cross the asymptote.
7. Give the domain, range, and horizontal asymptote equation for the final, transformed graph.

Base Function Table $\quad y=4^{x}$

x	y
-1	$4^{-1}=\frac{1}{4}$
0	$4^{0}=1$
1	$4^{1}=4$
2	$4^{2}=16$

Transformed Function Table $y=4^{-2(x+5)}-3$
$-\frac{1}{2} x-5 \quad y-3$

Domain: $\{x \mid x \in \mathbb{R}\}$
Range: $\{y \mid y>-3, y \in \mathbb{R}\}$
Horizontal Asymptote Equation:

$$
y=-3
$$

Back to notes package, page 3:

Creating Exponential Functions

The radioactive element americium is used in household smoke detectors. Am-241 has a half-life of approximately 432 years. The average smoke detector contains $200 \mu \mathrm{~g}$ of

(7.2) TB p 354: 1, 2, 3adeg, 4, 5, 6cd, 7ac, 11a, 12a
**Create the Equation, notes page 4 -
Do with a partner, using small whiteboards**

Create the Equation

1) The population of a town triples every 6 years. Suppose that 4000 people lived in the town in the year 2006
a) equation

$$
P=4000(3)^{\frac{T}{T}} \quad t=0,2006 \quad(S E)
$$

b) How many people would be living in the town in 2050 ?

$$
\begin{aligned}
& P=4000(3)^{(44 / 6)} \\
& \text { acterial culture doubles every } 2 \text { hours. This } \\
& \text { anion }
\end{aligned}
$$

b) How many bacteria would be in the culture after 5 hours?

$$
22000(2)^{5 / 2}=124,450.79
$$

2) A bacterial culture doubles every 2 hours. This culture had 22000 bacteria at time $t=0$.
a) equation

$$
\begin{aligned}
& 22000(2)^{5 / 2} \\
& A=60\left(\frac{1}{2}\right)^{t / 4}
\end{aligned}
$$

3) The half-life of a radioactive sample is 4 hours. The sample size was originally 60 g .
a) equation
b) How many grams would be in the sample after 11 hours?

$$
A=8.92 \mathrm{grms}
$$

4) Fo every meter hat you descend into water, 5% of light is blocked.
(If you start with 100% of the light and 5% is blocked, what percentage of light do you still have?) $\longrightarrow 9 \mathrm{~S} \%$
a) equation

$$
A=100(0.95)^{t / 1}
$$

as de mems

$$
0.95
$$

b) What percentage of light would still pass through the water, at a depth of 15 meters?

$$
A=100(0-95)^{15}=46.329 \simeq 46.33 \%
$$

5) $\$ 5000$ is invested at 7.2% compounded annually.
a) equation

$$
A=5000(1.072)^{t / 1}
$$

b) How much money would you have after 3 years?

$$
A=\# 6159.62
$$

Practice
(7.1) p 342: 1, 3-8
(7.2) TB p 354: 1, 2, 3adeg, 5, bcd, Fac, 11a, 12a

